scholarly journals The effect of rock permeability value on groundwater influx in underground coal gasification reactor

2021 ◽  
Vol 882 (1) ◽  
pp. 012054
Author(s):  
Nendaryono Madiutomo ◽  
Willy Hermawan ◽  
Weningsulistri ◽  
Madya Pamungkas

Abstract Rock permeability value is one of the most significant rock’s physical properties that affect groundwater influx processes in underground coal gasification (UCG). This value of rock permeability (K), namely the vertical permeability of flanking rocks (Kv) and horizontal permeability of coal (Kh). The purpose of this study was to determine the extent of the influence of the value of rock permeability on the potential of groundwater influx. The effect of rock permeability on groundwater influx into the UCG gasification reactor cavity in the presence of thermal loads and mineral composition content is large and significant to consider. Based on the resistance to heat loads, the type of sandstone lithology is relatively more resistant compared to siltstone and claystone lithology.

2013 ◽  
Vol 58 (2) ◽  
pp. 465-480 ◽  
Author(s):  
Piotr Małkowski ◽  
Zbigniew Niedbalski ◽  
Joanna Hydzik-Wiśniewska

Among the main directions of works on energy acquisition, there is the development and application of the technology of underground gasification of coal deposits (UCG). During the process of deposit burning and oxidation, there is also impact of temperatures exceeding 1000°C on rocks surrounding the deposit. As a result of subjecting carboniferous rocks to high temperatures for a prolonged period of time, their structure will change, which in turn will result in the change of their physical properties. Due to the project of underground coal gasification, as performed in Poland, laboratory tests are currently under way to a broad extent, including physical properties of carboniferous rocks subjected to high temperatures. The article presents results of laboratory tests of rocks surrounding the designed geo-reactor: changes to bulk density, specific density and porosity due to high temperature, and confronts the above results with the results of tests of thermal conductivity, specific heat and heat diffusivity (temperature conductivity) of the rocks. The mineralogical investigations were presented too.


2020 ◽  
Vol 376 ◽  
pp. 573-592
Author(s):  
Min Xu ◽  
Lin Xin ◽  
Weitao Liu ◽  
Xiangming Hu ◽  
Weimin Cheng ◽  
...  

2014 ◽  
Vol 1 (1) ◽  
pp. 15-24 ◽  
Author(s):  
Dipankar Chatterjee ◽  
◽  
Satish Gupta ◽  
Chebolu Aravind ◽  
Rakesh Roshan

Alloy Digest ◽  
1965 ◽  
Vol 14 (4) ◽  

Abstract A. M. 3 Die Steel is a medium-carbon, 5% chromium tool and die steel having high resistance to heat checking and erosion of die-casting dies and other hot work tools. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on high temperature performance as well as forming, heat treating, machining, and joining. Filing Code: TS-162. Producer or source: A. Milne & Company (Distributor).


Alloy Digest ◽  
1992 ◽  
Vol 41 (7) ◽  

Abstract THYROTHERM 2799 is a maraging tool steel with extremely low heat treat distortion and high resistance to thermal shock and excellent weldability. The alloy also possesses resistance to heat checking a high work temperatures. This datasheet provides information on composition, physical properties, and hardness as well as creep and fatigue. It also includes information on heat treating, machining, joining, and surface treatment. Filing Code: TS-511. Producer or source: Thyssen Specialty Steels Inc..


Author(s):  
Marian Wiatowski ◽  
Roksana Muzyka ◽  
Krzysztof Kapusta ◽  
Maciej Chrubasik

AbstractIn this study, the composition of tars collected during a six-day underground coal gasification (UCG) test at the experimental mine ‘Barbara’ in Poland in 2013 was examined. During the test, tar samples were taken every day from the liquid product separator and analysed by the methods used for testing properties of typical coke oven (coal) tar. The obtained results were compared with each other and with the data for coal tar. As gasification progressed, a decreasing trend in the water content and an increasing trend in the ash content were observed. The tars tested were characterized by large changes in the residue after coking and content of parts insoluble in toluene and by smaller fluctuations in the content of parts insoluble in quinoline. All tested samples were characterized by very high distillation losses, while for samples starting from the third day of gasification, a clear decrease in losses was visible. A chromatographic analysis showed that there were no major differences in composition between the tested tars and that none of the tar had a dominant component such as naphthalene in coal tar. The content of polycyclic aromatic hydrocarbons (PAHs) in UCG tars is several times lower than that in coal tar. No light monoaromatic hydrocarbons (benzene, toluene, ethylbenzene and xylenes—BTEX) were found in the analysed tars, which results from the fact that these compounds, due to their high volatility, did not separate from the process gas in the liquid product separator.


Sign in / Sign up

Export Citation Format

Share Document