scholarly journals Effect of water salinity on survival and osmotic level of larval (Zoea Stage) of mud crabs Scylla tranquebarica

2021 ◽  
Vol 890 (1) ◽  
pp. 012032
Author(s):  
Herlinah ◽  
Sulaeman ◽  
Gunarto ◽  
A Parenrengi ◽  
Rosmiati

Abstract Mud crab of the genus Scylla are considered one of the most sought-after seafood today. This crab species has high quality and delicious aging growth rate and encourage expansion in the aquaculture sector especially in Southeast Asian Countries. However, salinity changes will cause changes in organisms osmotic pressure, and every aquatic biota has an optimal salinity range for survival. The study focuses on evaluating the effect of water salinity on the survival and osmotic levels of the purple mud crab, larvae of Scylla tranquebarica at the zoea stage. The LC50 assessment was performed in 10 different level of water salinity (0; 5; 10; 15; 20; 25; 30; 35, 40, and 50 ppt). Each treatment involved 20 ind./L of newly hatched crabs and being observed for 24 h in 10 different water salinity using 1 L volume glass container. The number of crab’s mortality were taken for each salinity regime. Larval behavior monitored during experiment. Meanwhile, the measurement of osmotic level was carried out at the salinity of 25, 30, and 35 ppt. The result shows that mud crab larvae exhibit any tolerance on the low salinity ranged from 0-10 ppt and the salinity of > 40 ppt. On the other hand, mud crab larvae were still able to survive at the salinity ranged from 20-40 ppt for more than 24 hours. The trend of the osmotic level of mud crab to survive is by hypo osmotic to iso osmotic.

Petroleum ◽  
2019 ◽  
Vol 5 (4) ◽  
pp. 367-374 ◽  
Author(s):  
Peyman Rostami ◽  
Mohammad Fattahi Mehraban ◽  
Mohammad Sharifi ◽  
Morteza Dejam ◽  
Shahab Ayatollahi

2014 ◽  
Vol 9 (3) ◽  
pp. 134-140 ◽  
Author(s):  
M. Ikhwanuddi ◽  
S. Noor Baidu ◽  
W.I. Wan Norfai ◽  
A.B. Abol-Munaf

2016 ◽  
Vol 4 (2) ◽  
pp. 132 ◽  
Author(s):  
Gunarto Gunarto ◽  
Andi Parenrengi ◽  
Early Septiningsih

Improvement of feed quality for mangrove crab larvae rearing is one of theimportant factors to increase of crablet production. The aim of the research was to knowthe influenzing of enriched Artemia nauplii using Nannochloropsis sp fed to the differentstages of larvae Scylla olivacea on crablet production. Twelve units of tanks volume 250L filled with saline water salinity 30 ppt, aerated, then stocked with new hatched mud crablarvae zoea-1 at the density 100 ind./L. The larvae zoea-1 were fed rotifer, Brachionus sp.and after zoea-3, beside fed by rotifer, the larvae were also fed by Artemia naupli. Fourtreatments were tested, namely: A). Artemia nauplii enriched using Nannochloropsis sp.was given to the larvae zoea-3 until develop to megalop stage. B). Artemia nauplii enrichedusing Nannochloropsis sp was given to the larvae zoea-4 until develop to megalop stage.C). Artemia nauplii enriched using Nannochloropsis sp was given to the larvae zoea-5 stageuntil develop to megalop stage. D). Artemia nauplii without enriched using Nannochloropsissp. was given to the larvae zoea-3 until develop to megalop stage. Result of the researchshowed that the highest of Larvae Development Indexes and Megalop Occurence Indexeswas obtained in treatment A and resulted the highest of crablet production, then followed bytreatment C and B and those were significantly different (P<0.05) with the crablet productionin treatment D. The use of Artemia nauplii enriched by Nannochloropsis sp. to feed larvae,S. olivacea stage zoea-3 to zoea-5 until develop to the megalop stage is one of the key factorto enhance the crablet production. By this finding, the crablet production in hatchery will beincreased and the mud crab culture in brackishwater pond able to developed.


2013 ◽  
Vol 80 (1) ◽  
pp. 247-256 ◽  
Author(s):  
Janja Zajc ◽  
Tina Kogej ◽  
Erwin A. Galinski ◽  
José Ramos ◽  
Nina Gunde-Cimerman

ABSTRACTWallemia ichthyophagais a fungus from the ancient basidiomycetous genusWallemia(Wallemiales, Wallemiomycetes) that grows only at salinities between 10% (wt/vol) NaCl and saturated NaCl solution. This obligate halophily is unique among fungi. The main goal of this study was to determine the optimal salinity range for growth of the halophilicW. ichthyophagaand to unravel its osmoadaptation strategy. Our results showed that growth on solid growth media was extremely slow and resulted in small colonies. On the other hand, in the liquid batch cultures, the specific growth rates ofW. ichthyophagawere higher, and the biomass production increased with increasing salinities. The optimum salinity range for growth ofW. ichthyophagawas between 15 and 20% (wt/vol) NaCl. At 10% NaCl, the biomass production and the growth rate were by far the lowest among all tested salinities. Furthermore, the cell wall content in the dry biomass was extremely high at salinities above 10%. Our results also showed that glycerol was the major osmotically regulated solute, since its accumulation increased with salinity and was diminished by hypo-osmotic shock. Besides glycerol, smaller amounts of arabitol and trace amounts of mannitol were also detected. In addition,W. ichthyophagamaintained relatively small intracellular amounts of potassium and sodium at constant salinities, but during hyperosmotic shock, the amounts of both cations increased significantly. Given our results and the recent availability of the genome sequence,W. ichthyophagashould become well established as a novel model organism for studies of halophily in eukaryotes.


2004 ◽  
Vol 70 (9) ◽  
pp. 5469-5476 ◽  
Author(s):  
Mark A. Randa ◽  
Martin F. Polz ◽  
Eelin Lim

ABSTRACT The abundance of Vibrio vulnificus in coastal environments has been linked to water temperature, while its relationship to salinity is less clear. We have developed a culture-independent, most-probable-number quantitative PCR approach to examine V. vulnificus population dynamics in Barnegat Bay, N.J. Based on the combined analysis of our results from Barnegat Bay and from the literature, the present data show that (i) V. vulnificus population dynamics are strongly correlated to water temperature and (ii) although the general trend is for V. vulnificus abundance to be inversely correlated with salinity, this relationship depends on salinity levels. Irrespective of temperature, high abundances of V. vulnificus are observed at 5 to 10 ppt, which thus appears to be the optimal salinity regime for their survival. At 20 to 25 ppt, V. vulnificus abundances show a positive correlation to salinity. Unsuccessful attempts to resuscitate V. vulnificus, combined with our inability to detect cells during the winter despite an assay adapted to detect viable but nonculturable (VBNC) cells, suggest that the decline and eventual disappearance of V. vulnificus from the water column during the winter months is due primarily to a significant reduction in population size and is not only the consequence of cells entering the VBNC state. These findings are in line with the hypothesis that the sediment serves as a refuge for a subpopulation of V. vulnificus over the winter and weather-driven mixing events during the spring initiate a summer bloom in the water column.


1982 ◽  
Vol 22 (06) ◽  
pp. 816-830 ◽  
Author(s):  
Gary A. Pope ◽  
Kerming Tsaur ◽  
Robert S. Schechter ◽  
Ben Wang

Abstract We made static measurements of the phase volumes of mixtures of surfactant, polymer, alcohol, water, oil, sodium chloride, and in some cases polymer additives. We also made a limited number of viscosity, phase concentration, and interfacial tension (IFT) measurements. The purpose was to determine systematically the effect of various polymers on the phase behavior of various surfactant formulations. We made measurements with and without oil (n-octane and n-octane/benzene mixtures) across a range of salinity appropriate to the particular surfactant at temperatures between 24 and 75 degrees C. Introduction The oil-free (i.e., no added oil) solutions showed a characteristic phase separation into an aqueous surfactant-rich phase and an aqueous polymer-rich phase at some sufficiently high salinity (NaCl concentration), which we call the critical electrolyte concentration (CEC). The CEC was found to be a characteristic of a given surfactant/alcohol combination that shifts with the solubility of the surfactant qualitatively the same way as does the optimal salinity: but the CEC was found independent of the polymer type, polymer concentration (between the 100- and 1,000-ppm limits investigated), and surfactant concentration. The CEC increases with increasing temperature for the anionic surfactants and decreases with increasing temperature for the nonionic surfactants. When oil was added to the mixtures, an entirely different pattern of phase behavior was observed. As salinity increases, the particular formulations form the typical sequence of lower-phase microemulsion and excess oil, middle-phase microemulsion. excess oil, and excess brine: and upper-phase microemulsion and excess brine. The sequence with polymer was precisely the same over most of the salinity range but deviated over a limited range of salinity; the three-phase region simply shifted a small distance to the left on the salinity scale. Also, and probably more significantly, some of the aqueous phases in the critical region of the shift (which is also just above oil-free CEC salinity) were found to be gel-like in nature. These apparently occur under conditions such that the polymer concentration in the excess brine of the three-phase systems becomes very high because almost all the polymer is always in the brine phase, even when the brine phase is very small. Thus an overall 1,000 ppm of polymer easily can be concentrated to 10,000 ppm or more. One of the most remarkable aspects of the phase behavior of the surfactant/polymer systems is that the same patterns are observed for all combinations of anionic and nonionic surfactants and polymers. Also, little difference was observed in the IFT values with and without polymer. The three-phase systems still exhibited ultralow IFT values. Obviously, significant differences did occur in the brine viscosities when polymer was added. The polymer-free mixtures were themselves quite viscous, however, and the viscosity of the oil-free surfactant-rich phases (above the CEC) was significantly higher when the phases were in equilibrium with a polymer-rich aqueous phase, even though they apparently contained almost no polymer. We found that the polymer-rich phases had normal viscosities, as judged by the same polymer in the same brine at the expected concentration, assuming all the polymer was in the polymer-rich phase. The effect of polymer on the systems with oil was to increase the viscosity of the water-rich phase only, with little effect on the microemulsion phase unless it was the water-rich phase. SPEJ P. 816^


2019 ◽  
Vol 31 (4) ◽  
pp. 827-835 ◽  
Author(s):  
Adnan Amin-Safwan ◽  
Harman Muhd-Farouk ◽  
Mohd Pauzi Mardhiyyah ◽  
Musa Nadirah ◽  
Mhd Ikhwanuddin

Sign in / Sign up

Export Citation Format

Share Document