low salinity waterflooding
Recently Published Documents


TOTAL DOCUMENTS

260
(FIVE YEARS 103)

H-INDEX

26
(FIVE YEARS 7)

Fuel ◽  
2021 ◽  
pp. 121712
Author(s):  
Erik R. Smith ◽  
Bryan X. Medina-Rodríguez ◽  
Vladimir Alvarado

Author(s):  
Soumitra B. Nande ◽  
Samarth D. Patwardhan

AbstractLow salinity waterflooding has gained significant attention and importance in the last decade, as it is seen as an impactful method for recovery of additional oil from carbonate reservoirs. Existing literature does not do justice to the underlying mechanisms that aid in the recovery of additional oil from such rock types. In this paper, we present a comprehensive review of the research conducted on low salinity waterflooding in carbonates and further provide a detailed and critical analysis on the same. The intention of this paper is also to present a condensed research summary on the said topic, and to chart out a detailed roadmap for future work, thereby opening the possibilities of new avenues of research in the field.


Author(s):  
M. Fouad Snosy ◽  
Mahmoud Abu El Ela ◽  
Ahmed El-Banbi ◽  
Helmy Sayyouh

AbstractWaterflooding has been practiced as a secondary recovery mechanism for many years with no regard to the composition of the injected brine. However, in the last decade, there has been an interest to understand the impact of the injected water composition and the low salinity waterflooding (LSWF) in oil recovery. LSWF has been investigated through various laboratory tests as a promising method for improving oil recovery in carbonate reservoirs. These experiments showed diverse mechanisms and results. In this study, a comprehensive review and analysis for results of more than 300 carbonate core flood experiments from published work were performed to investigate the effects of several parameters (injected water, oil, and rock properties along with the temperature) on oil recovery from carbonate rock. The analysis of the results showed that the water composition is the key parameter for successful waterflooding (WF) projects in the carbonate rocks. However, the salinity value of the injected water seems to have a negligible effect on oil recovery in both secondary and tertiary recovery stages. The study indicated that waterflooding with optimum water composition can improve oil recovery up to 30% of the original oil in place. In addition, the investigation showed that changing water salinity from LSWF to high salinity waterflooding can lead to an incremental oil recovery of up to 18% in the tertiary recovery stage. It was evident that applying the optimum composition in the secondary recovery stage is more effective than applying it in the tertiary recovery stage. Furthermore, the key parameters of the injected water and rock properties in secondary and tertiary recovery stages were studied using Fractional Factorial Design. The results revealed that the concentrations of Mg2+, Na+, K+, and Cl− in the injected water are the greatest influence parameters in the secondary recovery stage. However, the most dominant parameters in the tertiary recovery stage are the rock minerals and the concentration of K+, HCO3−, and SO42− in the injected water. In addition, it appears that the anhydrite percentage in the carbonate reservoirs may be an effective parameter in the tertiary WF. Also, there are no clear relations between the incremental oil recovery and the oil properties (total acid number or total base number) in both secondary and tertiary recovery stages. In addition, the results of the analysis showed an incremental oil recovery in all ranges of the studied flooding temperatures. The findings of this study can help to establish guidelines for screening and designing optimum salinity and composition for WF projects in carbonate reservoirs.


Author(s):  
Abdulrazag Zekri ◽  
Hildah Nantongo ◽  
Fathi Boukadi

AbstractWhile the “low salinity waterflooding” (LSWF) has been praised for enhancing oil recovery from different core rocks, the performance of the technique in different wettability environments remains unclear. The consensus is that LSWF does not work well in water-wet carbonate oil reservoirs. The main research objective was to determine the effect of LSWF on the displacement efficiency (DE) in different wettability environments. Carbonate core flooding experiments on rocks with different wettabilities were performed at in-situ reservoir conditions using seawater as a “base water”. Seawater was sequentially diluted 10 to 50 times and spiked 2 and 6 times with sulfate. Following sequential flooding with four different waters, the DEs were measured for different wettabilities. Five different sequential brine floodings were performed on carbonate rocks. Results indicated that optimum low salinity water is a function of system wettability. Seawater (≈ 50,000 ppm) is the optimum brine for oil-wet and intermediate-wettability systems. Sequential flooding consisting of seawater followed by diluted seawater in a water-wet system yielded the highest DE of 88%. Besides, low-salinity brine followed by sulfate performed better in a water-wet environment than in oil- and intermediate-wettability systems.


Sign in / Sign up

Export Citation Format

Share Document