scholarly journals On the determination of a locally optimized Ellipsoidal model of the Geoid surface in sea areas

2021 ◽  
Vol 906 (1) ◽  
pp. 012036
Author(s):  
Persephone Galani ◽  
Sotiris Lycourghiotis ◽  
Foteini Kariotou

Abstract Deriving a local geoid model has drawn much research interest in the last decade, in an endeavour to minimize the errors in orthometric heights calculations, inherited by the use of global geoid reference models. In most parts of the earth, the local geoid surface may be tens of meters away from the Global Reference biaxial Ellipsoid (WGS84), which create numerus problems in topographic, environmental and navigational applications. Several methods have been developed for optimizing the precision of the calculation of the geoid heights undulations and the accuracy of the corresponding orthometric heights calculations. The optimization refers either to the method used for data acquisition, or to the geometrical method used for the determination of the best fit local geoid model. In the present work, we focus on the reference ellipsoid used for the geometric and geoid heights determination and develop a method to provide the one that fits best to the local geoid surface. Moreover, we consider relatively small sea regions and near to coast areas, where the usual methods for data acquisition fail more or less, and we pay attention in two directions: To obtain accurate measured data and to have the best possible reference ellipsoid for the area at hand. In this due, we use the “GNSS-on-boat” methodology to obtain direct sea level data, which we induce in a Moore Penrose pseudoinverse procedure to calculate the best fit triaxial ellipsoid. This locally optimized reference ellipsoid minimizes the geometric heights in the region at hand. The method is applied in two closed sea areas in Greece, namely Corinthian and Patra’s gulf and also in four regions in the Ionian Sea, which exhibit significant geoid alterations. Taking into account all factors of uncertainty, the precision of the mean sea level surface, produced by the “GNSS on boat” methodology, had been estimated at 5.43 cm for the gulf of Patras, at 3.76 cm for the Corinthian gulf and at 3.31 for the Ionian and Adriatic Sea areas. The average difference of this surface and the local triaxial reference ellipsoid, calculated in this work, is found to be less than 15 cm, whereas the corresponding difference with respect to WGS84 is of the order of 30m.

2016 ◽  
Vol 24 (5) ◽  
pp. 607-616 ◽  
Author(s):  
Michael Manisa ◽  
Rabindra Kumar Das ◽  
Mooketsi Segobye ◽  
Lopang Maphale

2020 ◽  
Vol 10 (1) ◽  
pp. 69-82 ◽  
Author(s):  
G. Panou ◽  
R. Korakitis ◽  
G. Pantazis

AbstractThe aim of this work is the determination of the parameters of Earth’s triaxiality through a geometric fitting of a triaxial ellipsoid to a set of given points in space, as they are derived from a geoid model. Starting from a Cartesian equation of an ellipsoid in an arbitrary reference system, we develop a transformation of its coefficients into the coordinates of the ellipsoid center, of the three rotation angles and the three ellipsoid semi-axes. Furthermore, we present different mathematical models for some special and degenerate cases of the triaxial ellipsoid. We also present the required mathematical background of the theory of least-squares, under the condition of minimization of the sum of squares of geoid heights. Also, we describe a method for the determination of the foot points of the set of given space points. Then, we prepare suitable data sets and we derive results for various geoid models, which were proposed in the last fifty years. Among the results, we report the semi-axes of the triaxial ellipsoid of geometric fitting with four unknowns to be 6378171.92 m, 6378102.06 m and 6356752.17 m and the equatorial longitude of the major semi-axis –14.9367 degrees. Also, the parameters of Earth’s triaxiality are directly estimated from the spherical harmonic coefficients of degree and order two. Finally, the results indicate that the geoid heights with reference to the triaxial ellipsoid are smaller than those with reference to the oblate spheroid and the improvement in the corresponding rms value is about 20 per cent.


2017 ◽  
Vol 23 (2) ◽  
pp. 327-337 ◽  
Author(s):  
Szu-Pyng Kao ◽  
Fang-Shii Ning ◽  
Chao-Nan Chen ◽  
Chia-Ling Chen

There exist a number of methods for approximating the local geoid surface and studies carried out to determine a local geoid. In this study, performance of geoid by PSO method in modeling local geoid was presented and analyzed. The ellipsoidal heights (h), derived from GPS observations, and known orthometric heights from first-order benchmarks were first used to create local geometric geoid model, then the PSO method was used to convert ellipsoidal heights into orthometric heights (H). The resulting values were used to compare between the spirit leveling and GPS methods. The adopted PSO method can improve the fitting of local geometric geoid by quadratic surface fitting method, which agrees with the known orthometric heights within ±1.02cm


Survey Review ◽  
2014 ◽  
Vol 47 (341) ◽  
pp. 109-114 ◽  
Author(s):  
G. D. Georgopoulos ◽  
E. C. Telioni
Keyword(s):  

Soil Research ◽  
1981 ◽  
Vol 19 (3) ◽  
pp. 333 ◽  
Author(s):  
JA Mead

Four adsorption equations were fitted to phosphate isotherm data for 38 soils from northern New South Wales. The two-surface Langmuir equation provided the best fit to the data. The Freundlich equation, however, was almost as effective, provided that an estimate of native adsorbed phosphate was included. It required fewer adsorption points because the transformed data produced a straight line. A regression constant, a, from the Freundlich equation although underestimating adsorption capacity, calculated from the Langmuir II equation, was highly correlated with this parameter (r = 0.984) and a buffering index (r = 0.986), calculated from the Langmuir I equation. The other Freundlich regression constant, n, was significantly correlated (P <1%) with the intensive parameters of adsorption from the one- and two-surface Langmuir equations. Since only two adsorption points are required for fitting the Freundlich equation and the parameters are easier to derive, it is suggested that this equation may be more suitable for commercial soil-testing laboratories than the Langmuir one- and two-surface equations for routine determination of phosphate adsorption characteristics of soils.


Sign in / Sign up

Export Citation Format

Share Document