scholarly journals Influence of boundary conditions on the optimization of a geothermal heat pump studied using a thermodynamic model

2022 ◽  
Vol 960 (1) ◽  
pp. 012003
Author(s):  
A Arz ◽  
A Minghini ◽  
M Feidt ◽  
M Costea ◽  
C Moyne

Abstract This paper is the logical follow-up to a work [1] whose results were presented at the 28th French Thermal Congress which was to be held in Belfort in 2020. The model developed at that time is completed in this proposal to consider the specificity of the geothermal heat pump. This is a machine operating upon a mechanical vapor compression cycle, the limit of which is an inverse Carnot cycle. Its specificity consists of a cold loop at the source with the geothermal exchanger and the evaporator, then a hot loop at the sink with the condenser and a floor heat exchanger in the application considered here. We are particularly concerned with the optimal sizing of these heat exchangers through their effectiveness. The parametric sensitivity of this distribution to various boundary conditions is studied, especially by focusing on different conditions at the source: (1) imposed soil temperature, corresponding to a Dirichlet condition, (2) imposed heat flux (including adiabatic case), corresponding to a Neumann condition, (3) imposed mechanical power consumed by the heat pump, and (4) imposed coefficient of performance COP, to all cases being associated a finite thermal capacity in thermal contact with the geothermal exchanger operating in steady-state conditions.

Energies ◽  
2016 ◽  
Vol 9 (5) ◽  
pp. 356 ◽  
Author(s):  
Young-Ju Jung ◽  
Hyo-Jun Kim ◽  
Bo-Eun Choi ◽  
Jae-Hun Jo ◽  
Young-Hum Cho

2009 ◽  
Vol 34 (12) ◽  
pp. 2898-2904 ◽  
Author(s):  
Liu Jun ◽  
Zhang Xu ◽  
Gao Jun ◽  
Yang Jie

2014 ◽  
Vol 114 ◽  
pp. 611-620 ◽  
Author(s):  
Parham Eslami-Nejad ◽  
Mohamed Ouzzane ◽  
Zine Aidoun

2017 ◽  
Vol 142 ◽  
pp. 2611-2616 ◽  
Author(s):  
Seyed Ali Ghoreishi-Madiseh ◽  
Ali Fahrettin Kuyuk

2020 ◽  
Vol 5 ◽  
pp. 11
Author(s):  
Sabrin Korichi ◽  
Bachir Bouchekima ◽  
Nabiha Naili ◽  
Messaouda Azzouzi

Motivated by the rapid spread of the novel pandemic disease (COVID-19) that swept the most countries in the world, a new radiation heating system consists of wall radiator panel system connected to a reversible geothermal heat pump (GHP) coupled with horizontal ground heat exchanger (HGHX) was proposed as fast and permanent solution to the risks of the dispersion of airborne infectious diseases in air-conditioned enclosed spaces. An experimental system was installed and tested in the laboratory of thermal process of Research and Technology Center of Energy (CRTEn), Tunisia, in order to achieve the two main goals of this work: developing a new radiation heating system with quick and inexpensive implementation while ensuring high efficiency and environment-friendly performance for the entire system. The results obtained show that it is feasible to use the novel RPHs as heat rejecter of the horizontal ground source heat pump system (HGSHPs) for heating buildings with limited surface land areas epically those located in the Mediterranean regions such as Tunisia, the average performance coefficients of the geothermal heat pump COPhp and the overall system COPsys are found to be 6.3 and 3, respectively. The thermal comfort analysis indicates that there is only a small vertical temperature fluctuation in the test room that would not produce any negative effect on thermal comfort.


Sign in / Sign up

Export Citation Format

Share Document