scholarly journals Calculation of temperature waves in kurums

2022 ◽  
Vol 962 (1) ◽  
pp. 012019
Author(s):  
S Ye Kholodovskii

Abstract The article indicates the relevance of the study of heat transfer processes in kurums. Boundary value problems of vertical temperature change in kurums and in the underlying rock base are solved, when the temperature on the surface of kurums changes according to a given periodic law, which simulates daily and seasonal temperature fluctuations. The cases when the rock base is a heat-conducting medium and permafrost are considered. Some regularities of temperature propagation along the depth are revealed.

2019 ◽  
Vol 265 ◽  
pp. 04004
Author(s):  
Andrey Ponomaryov ◽  
Aleksandr Zakharov

The article presents the results of monitoring the temperature of the surface layers of the earth. Monitoring was carried out at two sites with engineering-geological conditions typical for Perm. The geological conditions of the first site are clay soils, the second site is sandy. The first site is located in a dense urban development, the second in an unfinished part of the city of Perm. The depth of the soil massif on which the temperature was monitored was: for the first site - 19 m, for the second site - 37 m. Based on monitoring results, a picture of the temperature change in the soil massif in time for both sites was obtained. In the article, the average monthly temperatures of the soil massif are plotted on both sites. The zone of fluctuations in the temperature of the soil massif is revealed depending on the temperature of the outside air. The depth of the zone of seasonal temperature fluctuations was 10m. Monitoring determined that the temperature of the ground mass is below 10m: for the first site + 12 ° C with a decrease in temperature to 10°C to a depth of 19m, for the second site - a constant + 6-7°C to a depth of 37m.


2021 ◽  
Vol 274 ◽  
pp. 04010
Author(s):  
Vsevolod Krepkogorskij

Seasonal fluctuations in soil temperature at a depth of several meters are considered. It is assumed that the temperature of the earth surface changes strictly periodically. Then, according to the Fourier law, the soil temperature at depth will also change periodically with a smaller amplitude and time lag. What happens if we let the temperature on the surface deviate from the strict periodicity at some point in time? How will the nature of soil temperature fluctuations change at depth? Two types of deviations of the surface temperature from the periodic law are considered: 1) A sharp cold snap. For 30 days, the temperature of the earth surface is -30оC and 2) Warm winter. It is assumed that the temperature of the earth surface is zero during the winter months. Graphs of temperature changes at different depths in both cases are plotted. Conclusions are drawn about the duration of the period of noticeable deviations and the magnitude of the temperature deviation from the normal value.


Author(s):  
О.Г. Несиоловский ◽  
Р.Д. Адакин

Рассмотрены вопросы передачи тепла в хлебопекарной печи от теплогенератора к вторичному холодному теплоносителю – воздуху, особенностью которого является высокая влажность. Передача тепла от теплогенератора к вторичному теплоносителю – сложный процесс. Несмотря на то, что по этой тематике написано много работ и проведено множество исследований, вопрос остаётся до сих пор не полностью изученным. Критериального уравнения, с помощью которого можно было бы определить числа Нуссельта для условий теплоотдачи к влажному теплоносителю, проходящему через шахматный пучок теплообменника, в источниках не представлено. С помощью трёхмерного численного моделирования воспроизведена виртуальная работа теплогенератора, в результате по полученным данным было выведено новое критериальное уравнение и получены коэффициенты теплоотдачи (α), позволяющие в конструктивном методе расчёта теплообменных аппаратов определить площадь теплоотдачи для условий влагосодержания в теплоносителе в интервале d = 0,1…0,6 кг влаги на 1 кг воздуха (в хлебопекарной печи другие условия влагосодержания не используются). Предлагаемое уравнение существенно повышает точность расчёта площади теплоотдачи самого теплогенератора, поскольку учитывает влияние влажности на процесс теплоотдачи. The issues of heat transfer in the bakery oven from the heat generator to the secondary cold heat-conducting medium, the peculiarity of which is high humidity are considered. Heat transfer from the heat generator to the secondary heat-conducting medium is a complex process. Despite the fact that many works have been written on this topic and many researches have been carried out, the question remains still not completely understood. The sources do not provide a criterion equation by which the Nusselt numbers can be determined for the heat transfer conditions to the humid coolant passing through the staggered bundle of the heat exchanger. Using three-dimensional numerical modeling the virtual operation of the heat generator was reproduced, as a result according to the obtained data a new criterion equation was derived and heat transfer coefficients (α) were obtained allowing in the constructive method of calculating heat exchangers to determine the heat transfer area for moisture content conditions in the heat carrier in the range d = 0.1...0.6 kg of moisture per 1 kg of air (other moisture content conditions are not used in the bakery oven). The proposed equation significantly increases the accuracy of calculating the heat dissipation area of ​ ​ the heat generator itself since it takes into account the influence of humidity on the heat transfer process.


1961 ◽  
Vol 11 (2) ◽  
pp. 291-308 ◽  
Author(s):  
Merwin Sibulkin

In this paper a study of the energy-transfer processes associated with the motion of a viscous, heat-conducting fluid is begun. The class of motions considered are unsteady, two-dimensional, vortical flows. After developing simplified equations of motion and energy appropriate to this type of flow in the low Mach-number limit, general solutions of the momentum equations are presented.The concept of a line impulse of angular momentum is introduced as an example of this class of motions for which a solution of the energy field is obtainable in closed form. The solution for the line impulse can be viewed as a combination of velocity, pressure, and temperature waves concurrently radiating from the origin of the impulse and decaying with time. Particular examples of the development of the energy field of the impulse in both liquids and gases are presented for selected values of Prandtl number. The energy-transfer processes are discussed in some detail, and the resulting differences in the energy fields for liquid gases are emphasized.


2001 ◽  
Vol 32 (7-8) ◽  
pp. 7
Author(s):  
M. I. Osipov ◽  
K. A. Gladoshchuk ◽  
A. N. Arbekov

2016 ◽  
Vol 15 (5) ◽  
pp. 1027-1033 ◽  
Author(s):  
Timea Gabor ◽  
Viorel Dan ◽  
Ancuta Elena Tiuc ◽  
Ioana Monica Sur ◽  
Iulian Nicolae Badila

Sign in / Sign up

Export Citation Format

Share Document