scholarly journals Seasonal temperature waves in the ground, nonperiodic case

2021 ◽  
Vol 274 ◽  
pp. 04010
Author(s):  
Vsevolod Krepkogorskij

Seasonal fluctuations in soil temperature at a depth of several meters are considered. It is assumed that the temperature of the earth surface changes strictly periodically. Then, according to the Fourier law, the soil temperature at depth will also change periodically with a smaller amplitude and time lag. What happens if we let the temperature on the surface deviate from the strict periodicity at some point in time? How will the nature of soil temperature fluctuations change at depth? Two types of deviations of the surface temperature from the periodic law are considered: 1) A sharp cold snap. For 30 days, the temperature of the earth surface is -30оC and 2) Warm winter. It is assumed that the temperature of the earth surface is zero during the winter months. Graphs of temperature changes at different depths in both cases are plotted. Conclusions are drawn about the duration of the period of noticeable deviations and the magnitude of the temperature deviation from the normal value.

2022 ◽  
Vol 962 (1) ◽  
pp. 012019
Author(s):  
S Ye Kholodovskii

Abstract The article indicates the relevance of the study of heat transfer processes in kurums. Boundary value problems of vertical temperature change in kurums and in the underlying rock base are solved, when the temperature on the surface of kurums changes according to a given periodic law, which simulates daily and seasonal temperature fluctuations. The cases when the rock base is a heat-conducting medium and permafrost are considered. Some regularities of temperature propagation along the depth are revealed.


2017 ◽  
Vol 52 (11) ◽  
pp. 1127-1130
Author(s):  
Anderson Luiz Zwirtes ◽  
Dalvan José Reinert ◽  
Paulo Ivonir Gubiani ◽  
Vanderlei Rodrigues Da Silva ◽  
Rodrigo Pivoto Mulazzani ◽  
...  

Abstract: The objective of this work was to evaluate the effect of different amounts of black oat (Avena strigosa) straw covering soil surface on soil temperature at different depths. The treatments consisted of 0, 3, 6, and 9 Mg ha-1 straw. Soil temperature was measured hourly by a thermocouple inserted at different depths (0, 5, 15, 30, and 50 cm) and was used to adjust an equation correlating the temperature of covered soil with that of bare soil. With the correlations, it was possible to observe a point value of temperature (inversion temperature of straw effect), below which the presence of straw acts positively on the maintenance of soil temperature and above which the presence of straw acts negatively on soil heating.


1997 ◽  
Vol 3 (3-4) ◽  
pp. 50-53
Author(s):  
O.D. Fedorovskyi ◽  
◽  
V.I. Kononov ◽  
K.Yu. Sukhanov ◽  
◽  
...  

Author(s):  
Yuuki UCHIDA ◽  
Tomohito ASAKA ◽  
Takashi NONAKA ◽  
Keishi IWASHITA ◽  
Toshiro SUGIMURA

Proceedings ◽  
2019 ◽  
Vol 46 (1) ◽  
pp. 26
Author(s):  
Pranjal Sharma ◽  
Ankit Agarwal ◽  
Bhawna Chaudhary

In recent years, geologists have put in a lot of effort trying to study the evolution of Earth using different techniques studying rocks, gases, and water at different channels like mantle, lithosphere, and atmosphere. Some of the methods include estimation of heat flux between the atmosphere and sea ice, modeling global temperature changes, and groundwater monitoring networks. That being said, algorithms involving the study of Earth’s evolution have been a debated topic for decades. In addition, there is distinct research on the mantle, lithosphere, and atmosphere using isotopic fractionation, which this paper will take into consideration to form genes at the former stage. This factor of isotopic fractionation could be molded in QGA to study the Earth’s evolution. We combined these factors because the gases containing these isotopes move from mantle to lithosphere or atmosphere through gaps or volcanic eruptions contributing to it. We are likely to use the Rb/Sr and Sm/Nd ratios to study the evolution of these channels. This paper, in general, provides the idea of gathering some information about temperature changes by using isotopic ratios as chromosomes, in QGA the chromosomes depict the characteristic of a generation. Here these ratios depict the temperature characteristic and other steps of QGA would be molded to study these ratios in the form of temperature changes, which would further signify the evolution of Earth based on the study that temperature changes with the change in isotopic ratios. This paper will collect these distinct studies and embed them into an upgraded quantum genetic algorithm called Quantum Genetic Terrain Algorithm or Quantum GTA.


1990 ◽  
Vol 5 (1) ◽  
pp. 12-25 ◽  
Author(s):  
S.S. Zilitinkevich ◽  
V.A. Rumyantzev

2015 ◽  
Vol 12 (1) ◽  
pp. 23-30 ◽  
Author(s):  
C. Bertrand ◽  
L. González Sotelino ◽  
M. Journée

Abstract. Soil temperatures at various depths are unique parameters useful to describe both the surface energy processes and regional environmental and climate conditions. To provide soil temperature observation in different regions across Belgium for agricultural management as well as for climate research, soil temperatures are recorded in 13 of the 20 automated weather stations operated by the Royal Meteorological Institute (RMI) of Belgium. At each station, soil temperature can be measured at up to 5 different depths (from 5 to 100 cm) in addition to the bare soil and grass temperature records. Although many methods have been developed to identify erroneous air temperatures, little attention has been paid to quality control of soil temperature data. This contribution describes the newly developed semi-automatic quality control of 10-min soil temperatures data at RMI.


Sign in / Sign up

Export Citation Format

Share Document