heat generator
Recently Published Documents


TOTAL DOCUMENTS

56
(FIVE YEARS 19)

H-INDEX

4
(FIVE YEARS 1)

Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 275
Author(s):  
Ali Khanjari ◽  
Sangkyun Kang ◽  
Daeyong Lee ◽  
Dae-Yi Jung ◽  
Jang-Ho Lee

Changing the magnetic field on a conductor metal can induce eddy currents, which cause heat generation. In this paper, we use this idea to convert wind energy into thermal energy directly. This system contains a vertical axis wind turbine and an eddy currents heat generator. The eddy currents heat generator has two parts. The first part is a rotor with some permanent magnets causing the magnetic field changes, and the second part is a stator that acts as a conductor. The magnetic field changes in the heat generator play an important role in power output; therefore, we test four different magnet arrangements with different pole numbers on the rotor at different rotational speeds from 100 rpm to 500 rpm to measure the input torque and power needed to rotate each model. Then, based on the measured data, the wind turbine is designed by Qblade software based on the blade element momentum theory. It is shown that compared to the weight of the heat generator and the area of magnetization, designing a proper magnet arrangement for the heat generator can change the output power considerably as it can trigger the magnetic field fluctuation along the direction of rotation. For example, opting for a proper arrangement on the rotor decreases the number of poles from 120 to 24 but increases the power input from 223 W to 1357 W.


2021 ◽  
Vol 2119 (1) ◽  
pp. 012093
Author(s):  
A F Serov ◽  
V N Mamonov ◽  
A D Nazarov ◽  
N B Miskiv

Abstract The problem of increasing the efficiency of using the oncoming air flow for a wind wheel with a vertical axis of rotation, which is a mechanical drive of the wind heat generator, is considered. It is proposed to increase the efficiency of the device by installing an aerodynamic shield for the air flow oncoming the wind wheel. Such a shield is a cylindrical body in which a heat generator is placed. The shield creates an effect of confuser, leading to an increase in the speed and, consequently, in the kinetic energy of the air flow acting on the rotor blades. It is shown experimentally that the presence of an aerodynamic shield under the conditions of the experiments carried out at an incoming air flow velocity of ~ 1 m/s leads to a practical doubling of the wind wheel torque.


2021 ◽  
Vol 2119 (1) ◽  
pp. 012103
Author(s):  
A F Serov ◽  
V N Mamonov ◽  
A D Nazarov ◽  
N B Miskiv

Abstract This work investigates the flow structure in the gaps of a multi-cylinder circular Couette-Taylor system, which is a model of a two-rotor heat generator. The initial information for studying the flow structure was data on the magnitude of the resistance torque to rotors opposed rotation, as well as on the nature of the amplitude-frequency spectrum of pulsations of this torque, depending on the viscosity of the working fluid and the rotational speed of the heat generator rotors. The obtained data allow comparing the nature of hydrodynamic processes in the single and obtained multi-gap circular space of Couette-Taylor and calculating the parameters of structural formations in the multi-gap working space of the heat generator. At relative rotational speeds of rotors (3-50) rad/s, the main energy of flow pulsations (up to 90%) is found in the amplitude-frequency spectra in the frequency range (12-70) Hz. It is associated with vortices first described by Taylor, which are extended low-frequency regularly alternating spirals and vortex structures with right and left rotation in the region of higher frequencies (200– 500) Hz; their frequency is determined by the width of the annular gaps of the multi-cylinder system.


2021 ◽  
Vol 7 (1) ◽  
pp. 73-86
Author(s):  
Nima Norouzi ◽  

Current wind systems are intermittent and cannot be used as the baseload energy source. The research on the concept of wind power using direct thermal energy conversion and thermal energy storage, called wind powered Thermal Energy System (WTES), opened the door to a new energy system called Wind-thermal, which is a strategy for developing baseload wind power systems. The thermal energy is generated from the rotating energy directly at the top of the tower by the heat generator, which is a simple and light electric brake. The rest of the system is the same as the tower type concentrated solar power (CSP). This paper’s results suggest that the energy and exergy performance of the WTES (62.5% and 29.8%) is comparable to that of conventional wind power, which must be supported by the backup thermal plants and grid enhancement. This cogeneration nature of the WTES system makes this system suitable for using wind power as a direct heat source in several heat-demanding processes such as chemical production. Also, the light heat generator reduces some issues of wind power, such as noise and vibration, which are two main bottlenecks of the wind power technology.


PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0251312
Author(s):  
Paulo Carteri Coradi ◽  
Samuel Martens ◽  
Henrique Eguilhor Rodrigues ◽  
Andressa Fernandes Leal ◽  
Douglas Romeu da Costa ◽  
...  

The final quality of pre-processed coffees is influenced by the applied drying technology. Thus, the aim of the study was to develop and validate a heated air flow diffusion system to optimize and reduce the drying time of rotary dryers and improve the final quality of coffee. Computational fluid dynamics was used for the simulation of the air fluid dynamics in the combustion chamber of the heat generator. It was observed that the energy losses in the upper and lower walls of the heat generator chamber were higher with an increase in the convective heat transfer coefficient. It was found that the rate of fluid flow presented a fully developed profile, in which the higher speed value was found in the central region of the outlet. The reduction in moisture content during coffee drying was directly proportional to the increase in temperature. The Midilli model shows the best fit to describe the drying curves of the coffee. The effective diffusion coefficient increases with increasing temperature of the drying air. It was observed that the adjustments of the fluid dynamics in the burning of gas and the adaptation of the diffuser system significantly influenced the drying time and final quality of naturally processed and pulped coffees. In conclusion, the adapted technological set, a rotary dryer with gas heating and diffusion of heated air, had a high performance in the final quality of the coffee, and for this reason it is recommended to producers and the industry.


2021 ◽  
Vol 1 (1(57)) ◽  
pp. 39-43
Author(s):  
Vadim Yaris ◽  
Ivan Kuzyayev ◽  
Valeriy Nikolsky ◽  
Viktor Ved ◽  
Chlens Peter ◽  
...  

The object of research is a mathematical model of a new design of a vortex heat generator with translational-rotational flow in a variable geometry working space. One of the most problematic areas in the development of new and promising designs of heat generators by the method of physical modeling is the search for its optimal operating-technological and instrumental-design parameters. The implementation of a preliminary analysis of such structures by the method of mathematical modeling will significantly reduce the time and material costs for the development of promising designs of heat generators. The studies of the design of the new vortex heat generator, carried out by the method of mathematical modeling, made it possible to determine the range of its operation, to evaluate the operating-technological and hardware-design parameters that affect the efficiency of work. Studies of the hydrodynamics of the translational-rotational motion of a viscous fluid flow in the working space of a new vortex heat generator with a variable geometry of the working space made it possible to determine the critical velocity and pressure, the influence of the geometric parameters of the device on the generation of vortices that promote cavitation. Model studies were carried out in the range of fluid load changes in the range from 0.001 m3/s to 0.01 m3/s. The study of changes in the velocity field in the channels was carried out for the geometry of the channel with a taper angle  from 0° to 25°. The width of the working channel of the space Wn varied in the range of 130, 70 and 40 mm. It has been established that a good axial symmetry and smoothness of the coolant flow in the vortex zone along the swirler screw provides the coolant inlet through a nozzle with a rectangular cross-section. The dependence of the influence of the flow area of the nozzle for introducing the coolant into the vortex zone on the energy efficiency of the vortex apparatus as a whole is found experimentally. The research carried out makes it possible to design vortex heat generators with geometric parameters that meet modern energy efficiency requirements. The geometry of the swirler screw is determined, which increases the efficiency of the heat generator by 35 % in comparison with similar designs of vortex heat generators given in the literature.


2020 ◽  
Vol 6 (3) ◽  
pp. 55-64
Author(s):  
Dr. Prashobh Karunakaran ◽  
Prashanth Karunakaran ◽  
Shanthi Karunakaran ◽  
Arjun Karunakaran ◽  
Dr. Man Djun Lee ◽  
...  

2020 ◽  
Vol 8 (2) ◽  
pp. 75-81
Author(s):  
V. Yariz ◽  
◽  
V. Nikolsky ◽  
E. Gnatko ◽  
A. Palagnyuk ◽  
...  

The article presents the results of the performed analytical and experimental studies of the hydrodynamics of the translationalrotational motion of a viscous incompressible gas flow in the working space of a vortex heat generator of variable geometry, analytically determined the dependences of the effect of device performance, confuser opening angles, confuser channel width on the hydrodynamic parameters of the device and, as a consequence, its energy efficiency. The degree of energy efficiency of the swirler screw for the operation of a vortex heat generator at various loads on the working path has been experimentally estimated, according to the Euler number EUc. It has been proven that the energy efficiency of its operation is on average 35% higher when the swirler screw is installed. The influence of the geometry of the nozzle on the axial symmetry and smoothness of the flow of incompressible gas in the vortex chamber is investigated. It was found that the specified indicator is most satisfactory for a nozzle with a rectangular cross-section. The distribution of the temperature field of a moving incompressible gas along the height of the vortex chamber is investigated depending on the taper angle. The distribution of angular velocities along the axis of the flow swirler is investigated at various values of productivity. It was found that the angular velocity decreases according to the law of potential fluid flow. A mathematical model has been developed to optimize the operating modes and parameters of the vortex heat generator. A software block was built based on the mathematical package MathCAD version 11 for the implementation of the developed mathematical model. An optimal design of a vortex heat generator with a variable geometry of the working space has been developed, which has been tested in laboratory conditions. Laboratory studies have proven its high energy efficiency at the level of modern standards and the feasibility of using the device for heating buildings and structures in industry and the domestic sector. Keywords: incompressible gas, hydrodynamics of an incompressible gas flow, vortex motion, mathematical model, equation of motion, continuity equation, vortex heat generator, thermal energy, cavitation, turbulence, vortex zone, MathCAD package.


Sign in / Sign up

Export Citation Format

Share Document