scholarly journals Permanent magnet synchronous motor sensorless control based on rotor flux observer with low-pass filter adaptation

Author(s):  
D V Bevz ◽  
V M Zavyalov
2015 ◽  
Vol 740 ◽  
pp. 317-320
Author(s):  
Tong Yi Han ◽  
Zhong Hua Wang ◽  
Fei Fei Han

In this paper, a new sliding-mode observer (SMO) for sensorless control of permanent magnet synchronous motor (PMSM) is proposed. The observer is built based on the study of the back electromotive force (EMF) equivalent control. The new SMO, which substitues a hyperbolic tangent function for the signum function with a variable boundary layer, can reduce the chattering phenomenon. In order to overcome the time delay, we cancelled the low-pass filter and phase compensation module. In this way, not only the structure of the observer is simplified, but also the estimation precision is improved. The simulation results prove that the new SMO has a good dynamic performance and static quality.


2011 ◽  
Vol 128-129 ◽  
pp. 25-29
Author(s):  
Bo Fan ◽  
Xing Li ◽  
Jie Xin Pu ◽  
Jian Wei Ma ◽  
Ju Wei Zhang

In order to solve the problem of integration saturation drift and hardship in compensation quantity calculation exist in rotor flux observation of induction motor, a rotor flux observer based on nonlinear quadrature double compensation method is presented in this paper. The quantity of compensation is determined dynamically according to the quadrature level between flux and back electromotive force. Through the order change of compensation and low-pass filter, quick response of flux when signal frequency leaps is realized. The simulation result shows that the method can improve the flux waveform, realize the accurate and swift track of flux.


2020 ◽  
Vol 11 (4) ◽  
pp. 71
Author(s):  
Zhiqiang Wang ◽  
Bo Yao ◽  
Liyan Guo ◽  
Xuefeng Jin ◽  
Xinmin Li ◽  
...  

The accurate initial rotor position of a permanent magnet synchronous motor (PMSM) is necessary for starting the motor, and for the position sensorless control method adopted by a PMSM control system under some working conditions. This paper presents a new method to detect the initial rotor position of a permanent magnet synchronous motor (PMSM). The method does not need a low-pass filter, and has strong robustness and a simple calculation method. According to the relationship between high-frequency current response and rotor position angle θ, the rotor position angle can be obtained by arctangent and linear formulae. Finally, the magnetic polarity of the rotor is distinguished according to the change of inductance. In this method, the arctangent function is used to eliminate the filtering process and reduce the influence of the parameter deviation of the motor system on the detection accuracy of the initial position. The experimental results verify the correctness of the theoretical analysis and the effectiveness of the method.


Sign in / Sign up

Export Citation Format

Share Document