position detection
Recently Published Documents


TOTAL DOCUMENTS

890
(FIVE YEARS 202)

H-INDEX

28
(FIVE YEARS 6)

2022 ◽  
Vol 73 ◽  
pp. 103409
Author(s):  
Alicja Siewnicka ◽  
Bartłomiej Fajdek ◽  
Krzysztof Janiszowski

2022 ◽  
Vol 2022 ◽  
pp. 1-10
Author(s):  
Cheng Zhou ◽  
Dacong Ren ◽  
Xiangyan Zhang ◽  
Cungui Yu ◽  
Likai Ju

The devices used for human position detection in mechanical safety mainly include safety light curtain, safety laser scanner, safety pad, and vision system. However, these devices may be bypassed when used, and human or equipment cannot be distinguished. To solve this problem, a depth camera is proposed as a human position detection device in mechanical safety. The process of human position detection based on depth camera image information is given; it mainly includes image information acquisition, human presence detection, and distance measurement. Meanwhile, a human position detection method based on Intel RealSense depth camera and MobileNet-SSD algorithm is proposed and applied to robot safety protection. The result shows that the image information collected by the depth camera can detect the human position in real time, which can replace the existing mechanical safety human position detection device. At the same time, the depth camera can detect only human but not mobile devices and realize the separation and early warning of people and mobile devices.


2022 ◽  
Vol 7 (1) ◽  
pp. 33-40
Author(s):  
Miroslav Horník ◽  
Martin Pipíška ◽  
Jana Sekáčová ◽  
Jozef Augustín

Heavy metals and radionuclides can enter the food chain via cereals and vegetables grown in contaminated soils. In the case of microelements such as zinc, studies have not focused only to assessing its environmental risk, but also to enhancing its uptake by plants as an important growth-limiting factor. In our study, digitalized autoradiograms of whole plants of celery (Apium graveolens L.), tobacco (Nicotiana tabacum L.) and sunflower (Helianthus annuus L.) grown in hydroponic nutrient media spiked with 137CsCl, 60CoCl2 and 65ZnCl2 were used for quantitative determination of uptake, long-distance transport and distribution of Cs+, Co2+ and Zn2+ ions in plant tissues. Results from autoradiography and gammaspectrometry of plants showed, that cesium was translocated to aboveground part of the plants with the shoot-to-root ratio 1.0 : 0.6. On the contrary, cobalt and zinc were more immobilized in roots, with the shoot-to-root ratio up to 1.0 : 3.8. The highest concentration of cesium, cobalt and zinc, expressed in specific radioactivity per unit of leaf surface (Bq/cm2) was found in top, rapidly growing leaves, the lowest concentration in the oldest leaves in low position. Detection limits 3, 2 and 14 Bq/cm2 by using X-ray film for 137Cs, 60Co and 65Zn, respectively were obtained. These data correspond to detection limits 10.5 pg Cs+/cm2, 7.2 pg Co2+/cm2 and 785 pg Zn2+/cm2 at specific radioactivity of commercially available 137CsCl, 60CoCl2 and 65ZnCl2. Resolutions 1-2 mm was sufficient for visualization of metal uptake and distribution in roots, stalks, leaves and leaf venation. Obtained data are part of quantitative study of uptake and translocation of both low level-radioactive contamination in plants and microelements applied as fertilizers.


2022 ◽  
Vol 2022 ◽  
pp. 1-15
Author(s):  
Feng Cai ◽  
Ke Li ◽  
Xiaodong Sun

Electrically excited synchronous motor (EESM) is widely used in many large equipment drives because of its strong overload capacity, high efficiency, and adjustable power factor. The research and development of a high-performance EESM control system can realize the high combination of energy-saving speed regulation and green environmental protection and has a high social effect and economic value. In this paper, the signal injection method is used to obtain the initial rotor position information of EESM. Sliding Fourier transform is used to improve the initial position angle detection method based on the rotor signal injection method, and the improved method is compared with the traditional voltage integration method. Rotor high-frequency signal injection method was used to detect the rotor position information of the motor during operation, and the influence of the damping winding on the rotor signal injection method was analyzed. On the premise that the damping winding had no influence on the method, a method of obtaining the rotor position information of EESM without a speed sensor was designed. Finally, the speed sensorless regulation system using the initial rotor position detection method is simulated, which verifies the accuracy of the proposed speed sensorless control scheme.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Su Min Hoi ◽  
Ean Hin Ooi ◽  
Irene Mei Leng Chew ◽  
Ji Jinn Foo

AbstractA 3D stationary particle tracking velocimetry (SPTV) with a unique recursive corrective algorithm has been successfully established to detect the instantaneous regional fluid flow characteristics. The veracity of SPTV is corroborated by conducting actual displacement measurement validation, which gives a maximum percentage deviation of about 0.8%. This supports the accuracy of the current SPTV system in 3D position detection. More importantly, the SPTV detected velocity fluctuations are highly repeatable. In this study, SPTV is proven to be able to express the nature of chaotic fractal grid-induced regional turbulence, namely: the high turbulence intensity attributed to multilength-scale wake interactions, the Kolmogorov’s −5/3 law decay, vortex shedding, and the Gaussian flow undulations immediately leeward of the grid followed by non-Gaussian behaviour further downstream. Moreover, by comparing the flow fields between control no-grid and fractal grid-generated turbulence of a plate-fin array, SPTV reveals vigorous turbulence intensity, smaller regional integral-length-scale, and energetic vortex shedding at higher frequency for the latter, particularly between fins. Thereupon, it allows the unravelling of detailed thermofluid interplays of plate-fin heat sink heat transfer augmentation. The novelty of SPTV lies in its simplicity, use of low-cost off-the-shelf components, and most remarkably, low computational complexity in detecting fundamental characteristics of turbulent fluid flow.


2022 ◽  
Vol 8 ◽  
Author(s):  
Nikolaos Evangeliou ◽  
Dimitris Chaikalis ◽  
Athanasios Tsoukalas ◽  
Anthony Tzes

UAVs operating in a leader-follower formation demand the knowledge of the relative pose between the collaborating members. This necessitates the RF-communication of this information which increases the communication latency and can easily result in lost data packets. In this work, rather than relying on this autopilot data exchange, a visual scheme using passive markers is presented. Each formation-member carries passive markers in a RhOct configuration. These markers are visually detected and the relative pose of the members is on-board determined, thus eliminating the need for RF-communication. A reference path is then evaluated for each follower that tracks the leader and maintains a constant distance between the formation-members. Experimental studies show a mean position detection error (5 × 5 × 10cm) or less than 0.0031% of the available workspace [0.5 up to 5m, 50.43° × 38.75° Field of View (FoV)]. The efficiency of the suggested scheme against varying delays are examined in these studies, where it is shown that a delay up to 1.25s can be tolerated for the follower to track the leader as long as the latter one remains within its FoV.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Secil Aksoy ◽  
Kaan Orhan

Aim. Osteonecrosis can affect the mandibular condyle, and bone marrow edema may be a precursor in osteonecrosis development in temporomandibular disorder (TMD) patients. Early detection of bone marrow changes is crucial for occurring osteonecrosis. The purpose of this study was to compare the diagnostic value of fast spin-echo T2 weighted (FSE-T2W), fat-suppressed T2W (FS-T2W), and three-dimensional (3D) fast imaging employing steady-state acquisition (FIESTA-C) MR sequences for early detection of bone marrow changes as well as TMJ soft tissue alterations. Methods. A total of 60 joints with TMD were included in this study using a 1.5T MR machine (Signa HDxt, GE, Milwaukee, USA) using a dual surface TMJ coil. Qualitatively, the images were interpreted by two observers for disk configuration, disk position, joint fluid, and bone marrow changes. Quantitatively, signal intensity ratios (SIR) in the TMJ condyle, retrodiscal tissue, disk, and muscle were also measured using all tested sequences. Kappa coefficients were calculated to assess both intra- and interobserver agreements for each image set. The SIR of each sequence was compared using a one-way ANOVA Bonferroni-Dunn test. Results. Overall intraobserver kappa coefficients ranged between 0.35 and 0.88 for joint fluid and between 0.22 and 0.82 for bone marrow changes diagnosis, suggesting high intraobserver agreement for FS-T2W and 3D FIESTA-C sequences than FSE T2W sequence ( p < 0.05 ). 3D FIESTA-C showed higher agreement values for disk configuration and position detection than other sequences. Conclusions. 3D FIESTA-C sequences can be used and incorporated into routine MRI protocols for obtaining high-resolution TMJ MR images due to the short acquisition time and 3D nature of the sequence. Additional studies should be done for dynamic TMJ imaging with this sequence.


2021 ◽  
Author(s):  
Xiaojie Wang ◽  
Haofeng Chen ◽  
Gang Ma ◽  
xuanxuan yang ◽  
jialu geng

In this paper, a large-area flexible tactile sensor for multi-touch and force detection based on EIT technology was developed. A novel design of a sensor material made of a porous elastic polymer and ionic liquid was proposed. The proposed conductive flexible materials combining elastic porous structures and conductive liquids provide continuous, linear changes in impedance with respect to touch forces. A deep learning scheme PSPNet based on MobileNet was adopted to postprocess the originally reconstructed images to improve the performance of tactile perception. By using this data-driven method, we can improve the spatial resolution of the tactile sensor to achieve a single-point position detection error of 7.5±4.5 mm without using internal electrodes.


2021 ◽  
Author(s):  
Xiaojie Wang ◽  
Haofeng Chen ◽  
Gang Ma ◽  
xuanxuan yang ◽  
jialu geng

In this paper, a large-area flexible tactile sensor for multi-touch and force detection based on EIT technology was developed. A novel design of a sensor material made of a porous elastic polymer and ionic liquid was proposed. The proposed conductive flexible materials combining elastic porous structures and conductive liquids provide continuous, linear changes in impedance with respect to touch forces. A deep learning scheme PSPNet based on MobileNet was adopted to postprocess the originally reconstructed images to improve the performance of tactile perception. By using this data-driven method, we can improve the spatial resolution of the tactile sensor to achieve a single-point position detection error of 7.5±4.5 mm without using internal electrodes.


Sign in / Sign up

Export Citation Format

Share Document