scholarly journals Nonlinearity of the stress-strain dependence of quasi-isotropic CFRP laminate under re-static loading

Author(s):  
P B Severov
2012 ◽  
Vol 111 (4) ◽  
pp. 044906 ◽  
Author(s):  
S. Khansari ◽  
S. Sinha-Ray ◽  
A. L. Yarin ◽  
B. Pourdeyhimi

2018 ◽  
Vol 272 ◽  
pp. 244-249 ◽  
Author(s):  
Volha Semianiuk ◽  
Viktar V. Tur

Fiber reinforced polymer (FRP) bars are widely used in building structures, especially that are exposed to the aggressive environment influence and other special conditions. Nevertheless, due to the low FRP (e.g. glass, basalt, aramid fibers reinforced polymers) bars modulus of elasticity, exceeding crack opening width, as well as deflections can be observed. FRP bars pretensioning is considered as an effective method of its structural performance increasing. Physico-chemical method of the FRP bars pretensioning based on the self-stressing concrete utilizing is an alternative to the mechanical method and in its turn doesn’t need for special devices and anchorage systems as well as qualified personnel. Assessment of the initial stress-strain state obtained during self-stressing concrete expansion stage in the reinforced self-stressed members is presented. Diagram method of the self-stressing parameters verification based on the static loading tests results is presented. Comparison of the initial stress-strain state obtained during concrete expansion stage and predicted by the proposed model, as well as assessment of its influence on the behavior at the static loading stage in cases of the self-stressed reinforced with FRP bars members and traditionally reinforced with steel bars self-stressed members was performed.


1962 ◽  
Vol 35 (4) ◽  
pp. 927-936
Author(s):  
P. Mason

Abstract In previous papers in this series the linear viscoelastic behavior of gum and filled rubbers has been studied at mean extensions up to 100%. Linearity was assured by allowing each specimen to relax at the required extension to its equilibrium state and then measuring the complex Young's modulus for very small strains superimposed upon this equilibrium extension. Analysis of the data was made either in terms of a Mooney strain-energy function or, more generally, by relation to the experimentally determined equilibrium stress-strain curve of the material. At much higher strains, however, the use of a strain-energy function is invalidated by the hysteretic behavior of the rubber, and the determination of a stress-strain curve at anything resembling equilibrium becomes increasingly difficult. Consequently, in the region of high strain it is preferable to examine the strain dependence of the viscoelasticity without involving a direct comparison with the equilibrium behavior. In principle, the most significant analysis would be obtained from a study of the strain dependence of the relaxation or retardation spectrum. The long-time end of the spectrum could perhaps be measured using a refined creep or stress relaxation technique, although considerable care would be required to separate the effects from the residual behavior resulting from the initial large elongation. In the rubber-glass transition region, with which this work is primarily concerned, the difficulty lies in making measurements over a sufficiently wide frequency range. Normally the Williams—Landel—Ferry (WLF) equation would be used to transform constant-frequency data from a wide temperature range to the equivalent isothermal spectrum over a wide frequency range; however, the validity of this equation has been confirmed only for amorphous polymers, and its application to highly stretched, anisotropic rubber involves several untested assumptions as discussed further below. The main object of the present paper is to describe the observed variations in the viscoelasticity of natural and butyl rubber over a wide range of extension and temperature, although, of necessity, over a limited range of frequency. In addition, a tentative indication of the influence of strain upon the relaxation spectra is given, and the implications of this are examined.


2020 ◽  
pp. 28-36
Author(s):  
Volodymyr Sedin ◽  
Vladyslav Kovba ◽  
Yurii Volnianskyi ◽  
Kateryna Bikus

A full-scale experiment was conducted to study the operation of a multi-helix screw pile under static pressing and pulling load in dusty clay soil. Based on the full-scale test of a multi-helix screw pile under static loading in dusty clay soil, numerical modeling of the stress-strain state of the base of the multi-helix screw pile was performed. Multi-helix screw piles are actively used all over the world, and have also become widespread in Ukraine. Foundations made of multi-helix screw piles are often used for industrial construction as well as the foundations of low-rise buildings and structures. Despite the growing demand for the use of multi-helix screw piles in modern construction, there is no official document calculating the features of their design and bearing capacity of a multi-helix screw pile. This poses a number of new tasks for engineers and geotechnical: a) development of new modern calculation methods; b) development and use of modern normative documents and recommendations for the calculation of foundations from multi-helix screw piles in various soil conditions; с) use of computer-aided design systems for calculation of complex geotechnical tasks; d) development of calculation models that will take into account nonlinear models of deformation of materials and soil base. Foundations made of multi-helix screw piles are a promising direction in the field of foundation construction due to the reduction of the duration of the foundation and its economic. This requires the development of regulations with recommendations for the calculation and use of multi-helix screw piles in the field of foundation construction, development of modern calculation models for the calculation of bearing capacity and settling of multi-helix screw piles in different geological conditions. Based on the results of the field study of the work of multi-helix screw piles in clay soils, numerical modeling of the stress-strain state of the base of the multi-turn pile was performed, and their results were compared.


Author(s):  
Kazumune KATAGIRI ◽  
Koichi KASABA ◽  
Yoshitaka SHOJI ◽  
Masaki ISHIZAKI ◽  
Kazuo WATANABE ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document