crosslinked networks
Recently Published Documents


TOTAL DOCUMENTS

121
(FIVE YEARS 22)

H-INDEX

26
(FIVE YEARS 5)

Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4334
Author(s):  
Soo-Tueen Bee ◽  
Nicole Ooi Ker Qi ◽  
Lee Tin Sin ◽  
Hon-Meng Ng ◽  
Jun-Ven Lim ◽  
...  

This work was conducted to investigate the effect of carbon nanotube (CNT) on the mechanical-physico properties of the electron beam irradiated polyvinyl alcohol (PVOH) blends. The increasing of CNT amount up to 1.5 part per hundred resin (phr) has gradually improved tensile strength and Young’s modulus of PVOH/CNT nanocomposites due to effective interlocking effect of CNT particles in PVOH matrix, as evident in SEM observation. However, further increments of CNT, amounting up to 2 phr, has significantly decreased the tensile strength and Young’s modulus of PVOH/CNT nanocomposits due to the CNT agglomeration at higher loading level. Irradiation was found to effectively improve the tensile strength of PVOH/CNT nanocomposites by inducing the interfacial adhesion effect between CNT particles and PVOH matrix. This was further verified by the decrement values of d-spacing of the deflection peak. The increasing of CNT amounts from 0.5 phr to 1 phr has marginally induced the wavenumber of O–H stretching, which indicates the weakening of hydrogen bonding in PVOH matrix. However, further increase in CNT amounts up to 2 phr was observed to reduce the wavenumber of O–H stretching due to poor interaction effect between CNT and PVOH matrix. Electron beam irradiation was found to induce the melting temperature of all PVOH/CNT nanocomposite by inducing the crosslinked networks.


Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4157
Author(s):  
Liqian Zhu ◽  
Li Xu ◽  
Suyun Jie ◽  
Bogeng Li

Traditional crosslinked diene rubber has excellent thermal–mechanical properties and solvent resistance, yet it is incapable of being recycled via universal molding or injecting. Vitrimers, a new class of covalently crosslinked polymer networks, can be topologically rearranged with the associative exchange mechanism, endowing them with thermoplasticity. Introducing the concept of vitrimers into crosslinked networks for the recycling of rubbers is currently an attractive research topic. However, designing tailored rubber vitrimers still remains a challenge. Herein, polybutadiene (PB) vitrimers with different structures were prepared via partial epoxidation of double bonds and ring-opening esterification reactions. Their mechanical and relaxation properties were investigated. It was found that the increasing crosslinking density can increase tensile strength and activation energy for altering the network topology. The influence of side-group effects on their relaxation properties shows that an increase in the number of epoxy groups on the polybutadiene chain can increase the chance of an effective exchange of disulfide units. This work provides a simple network design which can tune vitrimer properties via altering the crosslinking density and side-group effects.


2021 ◽  
Author(s):  
Yixiang Wang ◽  
Lingyun Chen ◽  
Jing Jing Wang ◽  
Song-Qing Hu

2021 ◽  
Vol 11 (8) ◽  
pp. 3577
Author(s):  
Abdel-Basit Al-Odayni ◽  
Waseem Sharaf Saeed ◽  
Rawaiz Khan ◽  
Abdullah Al-Kahtani ◽  
Taieb Aouak ◽  
...  

The objective of this work was to investigate the advantages of using dichloro bisphenol A-glycidyl methacrylate (dCl-BisGMA) as a potential matrix for dental resin composites. A series of model composites containing 65 wt% resin (urethane dimethacrylate/triethylene glycol dimethacrylate/BisGMA as 1:3:1) and 35 wt% silanated silica were prepared. Thus, BisGMA was replaced by dCl-BisGMA as 0, 25, 50, and 100 wt% to obtain UTBC0, UTBC25, UTBC50, and UTBC100, respectively. The composites’ rheological properties, degree of double-bond conversion (DC), water sorption (WSP), and water solubility (WSL) were examined. The data revealed a statistically significant reduction in the complex viscosity of composites containing dCl-BisGMA, compared with UTBC0. No significant differences between DCs were detected (p < 0.05). A significant enhancement in the reduction of the dCl-BisGMA composite WSP was also detected, and conversely, WSL was increased. Although the viscosity, DC, and WSP characters were enhanced, a WSL increase is an undesirable development. However, WSL is supposedly caused by cyclization of small flexible chains, which is more likely to occur in the presence of hydrophobic monomers such as dCl-BisGMA and more prone to leaching than are crosslinked networks. We concluded that dCl-BisGMA is a monomer that could potentially be used as an alternative or in combination with traditional monomers, including BisGMA, in resin-based dental composites, and it deserves further investigation.


2021 ◽  
Author(s):  
Tian-Lu Cui ◽  
Wen-Bei Zhang ◽  
Jian-Jun Chen ◽  
Bo-Wen Zhang ◽  
Hui Wang ◽  
...  

Conjugated porous polymers were successfully synthesized through dynamic covalent condensation polymerization by using aromatic anhydrides and triacylhydrazine benzene. The obtained conjugated polymers with unique chemical stability, high specific surface area...


Soft Matter ◽  
2021 ◽  
Author(s):  
V. Negi ◽  
R. C. Picu

A geometric definition of entanglements in athermal random networks is proposed and is linked to the network stiffness. Entanglements produce a self-equilibrated stress which increases the stiffness.


2020 ◽  
Author(s):  
Anna Constantinou ◽  
Valeria Nele ◽  
James Doutch ◽  
Roman Moiseev ◽  
Vitaliy Khutoryanskiy ◽  
...  

Abstract Thermoresponsive polymers featuring the appropriate combination of structural characteristics, i.e. architecture, composition, and molar mass (MM), can form physically crosslinked networks in a solvent upon changes in temperature. This fascinating class of polymers finds utility in various sectors such as formulation science and tissue engineering. Here, we report a novel thermoresponsive triblock terpolymer which out-performs the most commonly used and commercially available thermoresponsive polymer, Poloxamer P407 (also known as Pluronic® F127) in terms of gelation concentration. Specifically, the in-house synthesised polymer forms gels at lower concentrations that is an advantage in biomedical applications. To elucidate the differences in their macroscale gelling behaviour, we investigate their micellization via differential scanning calorimetry, and their nanoscale self-assembly behaviour in detail by means of small-angle neutron scattering by simultaneously recording their rheological properties (Rheo-SANS). Two different gelation mechanisms for the two polymers are revealed and proposed. Ex vivo gelation study upon intracameral injections demonstrated excellent potential for its application to improve drug residence in the eye.


2020 ◽  
Vol 8 (34) ◽  
pp. 12999-13006
Author(s):  
Liang Shao ◽  
Ran Xu ◽  
Jingping Wang ◽  
Zhonglei Ma ◽  
Zhanyou Ji ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document