scholarly journals An improved deep convolutional neural network with multiscale convolution kernels for fault diagnosis of rolling bearing

2021 ◽  
Vol 1043 (5) ◽  
pp. 052021
Author(s):  
Liangcheng Fu ◽  
Li Zhang ◽  
Junyong Tao
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Defeng Lv ◽  
Huawei Wang ◽  
Changchang Che

Purpose The purpose of this study is to achieve an accurate intelligent fault diagnosis of rolling bearing. Design/methodology/approach To extract deep features of the original vibration signal and improve the generalization ability and robustness of the fault diagnosis model, this paper proposes a fault diagnosis method of rolling bearing based on multiscale convolutional neural network (MCNN) and decision fusion. The original vibration signals are normalized and matrixed to form grayscale image samples. In addition, multiscale samples can be achieved by convoluting these samples with different convolution kernels. Subsequently, MCNN is constructed for fault diagnosis. The results of MCNN are put into a data fusion model to obtain comprehensive fault diagnosis results. Findings The bearing data sets with multiple multivariate time series are used to testify the effectiveness of the proposed method. The proposed model can achieve 99.8% accuracy of fault diagnosis. Based on MCNN and decision fusion, the accuracy can be improved by 0.7%–3.4% compared with other models. Originality/value The proposed model can extract deep general features of vibration signals by MCNN and obtained robust fault diagnosis results based on the decision fusion model. For a long time series of vibration signals with noise, the proposed model can still achieve accurate fault diagnosis.


Author(s):  
Kun Xu ◽  
Shunming Li ◽  
Jinrui Wang ◽  
Zenghui An ◽  
Yu Xin

Deep learning method is gradually applied in the field of mechanical equipment fault diagnosis because it can learn complex and useful features automatically from the vibration signals. Among the many intelligent diagnostic models, convolutional neural network has been gradually applied to intelligent fault diagnosis of bearings due to its advantages of local connection and weight sharing. However, there are still some drawbacks. (1) The training process of convolutional neural network is slow and unstable. It has more training parameters. (2) It cannot perform well under different working conditions, such as noisy environment and different workloads. In this paper, a novel model named adaptive and fast convolutional neural network with wide receptive field is presented to overcome the aforementioned deficiencies. The prime innovations include the following. First, a deep convolutional neural network architecture is constructed using the scaled exponential linear unit activation function and global average pooling. The model has fewer training parameters and can converge rapidly and stably. Second, the model has a wide receptive field with two medium and three small length convolutional kernels. It also has high diagnostic accuracy and robustness when the environment is noisy and workloads are changed compared with other models. Furthermore, to demonstrate how the wide receptive field convolutional neural network model works, the reasons for high model performance are analyzed and the learned features are also visualized. Finally, the wide receptive field convolutional neural network model is verified by the vibration dataset collected in the background of high noise, and the results indicate that it has high diagnostic performance.


Sign in / Sign up

Export Citation Format

Share Document