Multiscale convolutional neural network and decision fusion for rolling bearing fault diagnosis

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Defeng Lv ◽  
Huawei Wang ◽  
Changchang Che

Purpose The purpose of this study is to achieve an accurate intelligent fault diagnosis of rolling bearing. Design/methodology/approach To extract deep features of the original vibration signal and improve the generalization ability and robustness of the fault diagnosis model, this paper proposes a fault diagnosis method of rolling bearing based on multiscale convolutional neural network (MCNN) and decision fusion. The original vibration signals are normalized and matrixed to form grayscale image samples. In addition, multiscale samples can be achieved by convoluting these samples with different convolution kernels. Subsequently, MCNN is constructed for fault diagnosis. The results of MCNN are put into a data fusion model to obtain comprehensive fault diagnosis results. Findings The bearing data sets with multiple multivariate time series are used to testify the effectiveness of the proposed method. The proposed model can achieve 99.8% accuracy of fault diagnosis. Based on MCNN and decision fusion, the accuracy can be improved by 0.7%–3.4% compared with other models. Originality/value The proposed model can extract deep general features of vibration signals by MCNN and obtained robust fault diagnosis results based on the decision fusion model. For a long time series of vibration signals with noise, the proposed model can still achieve accurate fault diagnosis.

2020 ◽  
Vol 72 (7) ◽  
pp. 947-953 ◽  
Author(s):  
Changchang Che ◽  
Huawei Wang ◽  
Xiaomei Ni ◽  
Qiang Fu

Purpose The purpose of this study is to analyze the intelligent fault diagnosis method of rolling bearing. Design/methodology/approach The vibration signal data of rolling bearing has long time series and strong noise interference, which brings great difficulties for the accurate diagnosis of bearing faults. To solve those problems, an intelligent fault diagnosis model based on stacked denoising autoencoder (SDAE) and convolutional neural network (CNN) is proposed in this paper. The SDAE is used to process the time series data with multiple dimensions and noise interference. Then the dimension-reduced samples can be put into CNN model, and the fault classification results can be obtained by convolution and pooling operations of hidden layers in CNN. Findings The effectiveness of the proposed method is validated through experimental verification and comparative experimental analysis. The results demonstrate that the proposed model can achieve an average classification accuracy of 96.5% under three noise levels, which is 3-13% higher than the traditional models and single deep-learning models. Originality/value The combined SDAE–CNN model proposed in this paper can denoise and reduce dimensions of raw vibration signal data, and extract the in-depth features in image samples of rolling bearing. Consequently, the proposed model has more accurate fault diagnosis results for the rolling bearing vibration signal data with long time series and noise interference. Peer review The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-11-2019-0496/


2019 ◽  
Vol 9 (13) ◽  
pp. 2690 ◽  
Author(s):  
Tao Zan ◽  
Hui Wang ◽  
Min Wang ◽  
Zhihao Liu ◽  
Xiangsheng Gao

Aiming at the problem of poor robustness of the intelligent diagnostic model, a fault diagnosis model of rolling bearing based on a multi-dimension input convolutional neural network (MDI-CNN) is proposed. Compared with the traditional convolution neural network, the proposed model has multiple input layers. Therefore, it can fuse the original signal and processed signal—making full use of advantages of the convolutional neural networks to learn the original signal characteristics automatically, and also improving recognition accuracy and anti-jamming ability. The feasibility and validity of the proposed MDI-CNN are verified, and its advantages are proved by comparison with the other related models. Moreover, the robustness of the model is tested by adding the noise to the test set. Finally, the stability of the model is verified by two experiments. The experimental results show that the proposed model improves the recognition rate, robustness and convergence performance of the traditional convolution model and has good generalization ability.


Author(s):  
Canyi Du ◽  
Rui Zhong ◽  
Yishen Zhuo ◽  
Xinyu Zhang ◽  
Feifei Yu ◽  
...  

Abstract Traditional engine fault diagnosis methods usually need to extract the features manually before classifying them by the pattern recognition method, which makes it difficult to solve the end-to-end fault diagnosis problem. In recent years, deep learning has been applied in different fields, bringing considerable convenience to technological change, and its application in the automotive field also has many applications, such as image recognition, language processing, and assisted driving. In this paper, a one-dimensional convolutional neural network (1D-CNN) in deep learning is used to process vibration signals to achieve fault diagnosis and classification. By collecting the vibration signal data of different engine working conditions, the collected data are organized into several sets of data in a working cycle, which are divided into a training sample set and a test sample set. Then, a one-dimensional convolutional neural network model is built in Python to allow the feature filter (convolution kernel) to learn the data from the training set and these convolution checks process the input data of the test set. Convolution and pooling extract features to output to a new space, which is characterized by learning features directly from the original vibration signals and completing fault diagnosis. The experimental results show that the pattern recognition method based on a one-dimensional convolutional neural network can be effectively applied to engine fault diagnosis and has higher diagnostic accuracy than traditional methods.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Junfeng Guo ◽  
Xingyu Liu ◽  
Shuangxue Li ◽  
Zhiming Wang

As one of the important parts of modern mechanical equipment, the accurate real-time diagnosis of rolling bearing is particularly important. Traditional fault diagnosis methods have some disadvantages, such as low diagnostic accuracy and difficult fault feature extraction. In this paper, a method combining Wavelet transform (WT) and Deformable Convolutional Neural Network (D-CNN) is proposed to realize accurate real-time fault diagnosis of end-to-end rolling bearing. The vibration signal of rolling bearing is taken as the monitoring target. Firstly, the Orthogonal Matching Pursuit (OMP) algorithm is used to remove the harmonic signal and retain the impact signal and noise. Secondly, the time-frequency map of the signal is obtained by time-frequency transform using Wavelet analysis. Finally, the D-CNN is used for feature extraction and classification. The experimental results show that the accuracy of the method can reach 99.9% under various fault modes, and it can accurately identify the fault of rolling bearing.


Sign in / Sign up

Export Citation Format

Share Document