scholarly journals Collaborative Robot Safety for Human-Robot Interaction in Domestic Simulated Environments

2021 ◽  
Vol 1096 (1) ◽  
pp. 012029
Author(s):  
T E Kaonain ◽  
M A A Rahman ◽  
M H M Ariff ◽  
W J Yahya ◽  
K Mondal
Author(s):  
R.R. Galin ◽  

This article discusses the issues of human-robot interaction on the example of collaborative robot. The analysis of the bases of classification of human-robot interaction in a robotic system is carried out. The interaction schemes in the human-obot system are considered, taking into account the multiplicity of agents and the influence of the mutual distance between a human and a collaborative robot.


Author(s):  
Yusuf Aydin ◽  
Doganay Sirintuna ◽  
Cagatay Basdogan

In the near future, collaborative robots (cobots) are expected to play a vital role in the manufacturing and automation sectors. It is predicted that workers will work side by side in collaboration with cobots to surpass fully automated factories. In this regard, physical human-robot interaction (pHRI) aims to develop natural communication between the partners to bring speed, flexibility, and ergonomics to the execution of complex manufacturing tasks. One challenge in pHRI is to design an optimal interaction controller to balance the limitations introduced by the contradicting nature of transparency and stability requirements. In this paper, a general methodology to design an admittance controller for a pHRI system is developed by considering the stability and transparency objectives. In our approach, collaborative robot constrains the movement of human operator to help with a pHRI task while an augmented reality (AR) interface informs the operator about its phases. To this end, dynamical characterization of the collaborative robot (LBR IIWA 7 R800, KUKA Inc.) is presented first. Then, the stability and transparency analyses for our pHRI task involving collaborative drilling with this robot are reported. A range of allowable parameters for the admittance controller is determined by superimposing the stability and transparency graphs. Finally, three different sets of parameters are selected from the allowable range and the effect of admittance controllers utilizing these parameter sets on the task performance is investigated.


2009 ◽  
Author(s):  
Matthew S. Prewett ◽  
Kristin N. Saboe ◽  
Ryan C. Johnson ◽  
Michael D. Coovert ◽  
Linda R. Elliott

2010 ◽  
Author(s):  
Eleanore Edson ◽  
Judith Lytle ◽  
Thomas McKenna

2020 ◽  
Author(s):  
Agnieszka Wykowska ◽  
Jairo Pérez-Osorio ◽  
Stefan Kopp

This booklet is a collection of the position statements accepted for the HRI’20 conference workshop “Social Cognition for HRI: Exploring the relationship between mindreading and social attunement in human-robot interaction” (Wykowska, Perez-Osorio & Kopp, 2020). Unfortunately, due to the rapid unfolding of the novel coronavirus at the beginning of the present year, the conference and consequently our workshop, were canceled. On the light of these events, we decided to put together the positions statements accepted for the workshop. The contributions collected in these pages highlight the role of attribution of mental states to artificial agents in human-robot interaction, and precisely the quality and presence of social attunement mechanisms that are known to make human interaction smooth, efficient, and robust. These papers also accentuate the importance of the multidisciplinary approach to advance the understanding of the factors and the consequences of social interactions with artificial agents.


Sign in / Sign up

Export Citation Format

Share Document