scholarly journals Post-processing of additively manufactured metal parts by ultrashort laser pulses for high-quality net shape geometries and advanced functionality

2021 ◽  
Vol 1135 (1) ◽  
pp. 012005
Author(s):  
Daniel Holder ◽  
Matthias Buser ◽  
Artur Leis ◽  
Rudolf Weber ◽  
Thomas Graf

Abstract Additive manufacturing by means of laser-based powder bed fusion (LPBF) offers high flexibility with respect to the generation of individualized and light-weight metal parts. However, the produced parts are typically attached to support structures and deviate a few tens of micrometers from the targeted final component in geometrical net shape and surface roughness due to the melt-based fusion process. Therefore, different post-processing techniques were examined in the past to resolve the mentioned quality drawbacks. In our work, we investigated the potential of post-processing of LPBF-generated Ti6Al4V parts with ultrashort pulse laser ablation. As a result, the support structures were effectively removed, the surface roughness was reduced by 81% and complex geometries with high shape accuracy were fabricated. Furthermore, the LBPF-generated parts were laser surface structured to investigate the potential of post-processing with ultrashort laser pulses for advanced functionality, such as water-repellent surfaces. The generation of surface structures on the LPBF-generated Ti6Al4V part changed the wetting behaviour from hydrophilic to hydrophobic with an increased contact angle from 73° up to 130°.

2020 ◽  
Vol 9 (1-2) ◽  
pp. 101-110 ◽  
Author(s):  
Daniel Holder ◽  
Artur Leis ◽  
Matthias Buser ◽  
Rudolf Weber ◽  
Thomas Graf

AbstractAdditively manufactured parts typically deviate to some extent from the targeted net shape and exhibit high surface roughness due to the size of the powder grains that determines the minimum thickness of the individual slices and due to partially molten powder grains adhering on the surface. Optical coherence tomography (OCT)-based measurements and closed-loop controlled ablation with ultrashort laser pulses were utilized for the precise positioning of the LPBF-generated aluminum parts and for post-processing by selective laser ablation of the excessive material. As a result, high-quality net shape geometries were achieved with surface roughness, and deviation from the targeted net shape geometry reduced by 67% and 63%, respectively.


Author(s):  
Isamu Miyamoto ◽  
Kristian Cvecek ◽  
Yasuhiro Okamoto ◽  
Michael Schmidt ◽  
Henry Helvajian

Author(s):  
Marcelo Bertolete Carneiro ◽  
Patrícia Alves Barbosa ◽  
Ricardo Samad ◽  
NIlson Vieira ◽  
Wagner de Rossi ◽  
...  

Author(s):  
V. Pouget ◽  
E. Faraud ◽  
K. Shao ◽  
S. Jonathas ◽  
D. Horain ◽  
...  

Abstract This paper presents the use of pulsed laser stimulation with picosecond and femtosecond laser pulses. We first discuss the resolution improvement that can be expected when using ultrashort laser pulses. Two case studies are then presented to illustrate the possibilities of the pulsed laser photoelectric stimulation in picosecond single-photon and femtosecond two-photon modes.


2021 ◽  
Vol 11 (2) ◽  
Author(s):  
Pengjie Wang ◽  
Zheng Gong ◽  
Seong Geun Lee ◽  
Yinren Shou ◽  
Yixing Geng ◽  
...  

2021 ◽  
Vol 127 (5) ◽  
Author(s):  
Daniel Holder ◽  
Rudolf Weber ◽  
Thomas Graf ◽  
Volkher Onuseit ◽  
David Brinkmeier ◽  
...  

AbstractA simplified analytical model is presented that predicts the depth progress during and the final hole depth obtained by laser percussion drilling in metals with ultrashort laser pulses. The model is based on the assumption that drilled microholes exhibit a conical shape and that the absorbed fluence linearly increases with the depth of the hole. The depth progress is calculated recursively based on the depth changes induced by the successive pulses. The experimental validation confirms the model and its assumptions for percussion drilling in stainless steel with picosecond pulses and different pulse energies.


2021 ◽  
Vol 127 (9) ◽  
Author(s):  
A. Feuer ◽  
R. Weber ◽  
R. Feuer ◽  
D. Brinkmeier ◽  
T. Graf

AbstractThe influence of the laser fluence on the quality of percussion-drilled holes was investigated both experimentally and by an analytical model. The study reveals that the edge quality of the drilled microholes depends on the laser fluence reaching the rear exit of the hole and changes with the number of pulses applied after breakthrough. The minimum fluence that must reach the hole’s exit in order to obtain high-quality microholes in stainless steel was experimentally found to be 2.8 times the ablation threshold.


Sign in / Sign up

Export Citation Format

Share Document