scholarly journals Reduced finite-volume model for the fast numerical calculation of the fluid flow in the melt pool in laser beam welding

2021 ◽  
Vol 1135 (1) ◽  
pp. 012010
Author(s):  
Jonas Wagner ◽  
Peter Berger ◽  
Philipp He ◽  
Florian Fetzer ◽  
Rudolf Weber ◽  
...  

Abstract In this paper we propose a reduced two-dimensional finite-volume model for the fast calculation of the melt flow. This model was used to determine the influence of the welding speed, viscosity in the melt and vapour flow inside of the keyhole on the fluid flow field, the temperature distribution, and the resulting weld-pool geometry for laser beam welding of aluminium. The reduced computational time resulting from this approach allows the fast qualitative investigation of different aspects of the melt flow over a wide range of parameters. It was found that the effect of viscosity within the melt is more pronounced for lower welding speeds whereas the effect of friction at the keyhole walls is more pronounced for higher welding speeds. The weld-pool geometry mainly depends on the welding speed.

2011 ◽  
Vol 183 ◽  
pp. 241-248 ◽  
Author(s):  
A. Marmołowski ◽  
W. Kiełczyński

Great interest of the laser beam welding in industry is a new theoretical task, making planning the welding procedure specification and the quality control of welded joints easier. Estimating and calculating the dimensions of a weld pool and temperature distribution near weld mainly concern heat source modelling. In the presented work calculations of welding pool shape and thermal field for cylindrical-powered-normally model of heat source have been presented. Parameters of the model of heat source and weld pool geometry were determined using analytical-numerical calculations. The results of numerical calculations were compared with the experimental data for butt joint made by CO2 laser beam. Comparable results have been observed. Practical recommendations for assumptions of model parameters - the flux density energy distribution of the heat source in case of calculations of the thermal field in the vicinity of a weld pool are given.


2000 ◽  
Vol 33 (6) ◽  
pp. 662-671 ◽  
Author(s):  
W Sudnik ◽  
D Radaj ◽  
S Breitschwerdt ◽  
W Erofeew

Procedia CIRP ◽  
2018 ◽  
Vol 74 ◽  
pp. 470-474 ◽  
Author(s):  
Vincent Mann ◽  
Konstantin Hofmann ◽  
Kerstin Schaumberger ◽  
Tobias Weigert ◽  
Stephan Schuster ◽  
...  

2009 ◽  
Vol 137 (4) ◽  
pp. 1422-1437 ◽  
Author(s):  
Jin-Luen Lee ◽  
Alexander E. MacDonald

Abstract An icosahedral-hexagonal shallow-water model (SWM) on the sphere is formulated on a local Cartesian coordinate based on the general stereographic projection plane. It is discretized with the third-order Adam–Bashforth time-differencing scheme and the second-order finite-volume operators for spatial derivative terms. The finite-volume operators are applied to the model variables defined on the nonstaggered grid with the edge variables interpolated using polynomial interpolation. The projected local coordinate reduces the solution space from the three-dimensional, curved, spherical surface to the two-dimensional plane and thus reduces the number of complete sets of basis functions in the Vandermonde matrix, which is the essential component of the interpolation. The use of a local Cartesian coordinate also greatly simplifies the mathematic formulation of the finite-volume operators and leads to the finite-volume integration along straight lines on the plane, rather than along curved lines on the spherical surface. The SWM is evaluated with the standard test cases of Williamson et al. Numerical results show that the icosahedral SWM is free from Pole problems. The SWM is a second-order finite-volume model as shown by the truncation error convergence test. The lee-wave numerical solutions are compared and found to be very similar to the solutions shown in other SWMs. The SWM is stably integrated for several weeks without numerical dissipation using the wavenumber 4 Rossby–Haurwitz solution as an initial condition. It is also shown that the icosahedral SWM achieves mass conservation within round-off errors as one would expect from a finite-volume model.


2020 ◽  
Vol 122 ◽  
pp. 103835
Author(s):  
Markus Luecking ◽  
Ralf Brinkmann ◽  
Scarlett Ramos ◽  
Wilhelm Stork ◽  
Nico Heussner

Sign in / Sign up

Export Citation Format

Share Document