severn estuary
Recently Published Documents


TOTAL DOCUMENTS

292
(FIVE YEARS 8)

H-INDEX

42
(FIVE YEARS 1)

2021 ◽  
Vol 57 ◽  
pp. 193-206
Author(s):  
Simon K. Haslett ◽  
Bernardine Wong

A high-magnitude coastal flood event catastrophically affected the macrotidal Bristol Channel and Severn Estuary in southwest Great Britain, United Kingdom, on 30th January 1607 causing an estimated 2000 fatalities. Historical and physical evidence has provided a basis for the development of a theory that the flood may have been due to a tsunami rather than a storm. Previous studies have collected field data to test this hypothesis including a dataset of 136 wave-transported boulder clasts that was utilised to estimate minimum wave heights through hydrodynamic equations in 2007, but the dataset has hitherto remained unpublished in full. Since 2007 these equations have undergone refinement and for this paper minimum wave heights were recalculated from boulder measurements using revised hydrodynamic equations and presents the complete dataset for the first time. A recent study claiming that such equations are flawed is considered premature, given ongoing refinements to the equations. The results of the present study indicate that a tsunami 4.2 m high can explain the dislodgement of all boulders measured, equivalent to a storm wave height of 16.9 m, which is considerably greater than observed storm wave heights in the region. An up-channel increase in minimum wave height is also suggested by these data, generally corroborating the 2007 study, which may be due to wave amplification caused by the overall funnel-shape of the embayment. The areas worst affected by the 1607 flood are located in the coastal lowlands of the inner Bristol Channel and Severn Estuary, coinciding with the highest minimum estimated wave heights.


2021 ◽  
Author(s):  
Marios N. Miliorizos ◽  
Nicholas Reiss ◽  
Nikolaos S. Melis ◽  
William A.J. Rutter

<p>Decades of work has been completed on Variscan geology of the inner Bristol Channel and Severn Estuary, yet there are few structural models that correctly portray their regional framework. Many published charts loosely depict the positions, strikes and nature of the Variscan deformation front and its geometry across SE Wales. Thus, we correlate seismic data with coastal outcrop at appropriate scales and detail, to present a refined model for the front.</p><p>Coastal outcrops, in conjunction with known crustal-scale seismic data: BIRPS, SWAT and LISPB, are combined with archives of intermediate scale: wide-angle reflection, seismic refraction and reflection records. They justify a reinterpretation of the front and may explain the geometry and kinematics of its foreland. Using these data, we draw new sections from north Devon to South Wales showing the position of structural units, both Palaeozoic and Mesozoic, affected either directly by thrusts, folds and disturbances or indirectly through structural inheritance during reactivation.</p><p>We correlate extracts from SWAT lines 2 and 3, a reinterpretation of LISPB data and the new fine-scale sections, S-N across the inner channel and W-E across the estuary. They enable the synopsis of crustal-scale data and regional maps. We find from measurement of several hundred lineaments and planes along the borderlands that the predominant orientation is ENE-WSW, unlike the central Bristol Channel which is WNW-ESE. All these, plus outcrop scale geometries and striation analyses, support the new tectonic partition of SE Wales and west of England.</p><p>Much information on the partition boundaries can be gathered from the marine geography of the estuary using Admiralty charts that yield accurate soundings. Seabed profiles across the estuary illustrate the positions of bedrock. Many align with onshore structure both locally and on the grander scale and through 3D reconstruction, we find that a crucial confluence of three discrete trends of lineament converge near Flat Holm and Steep Holm and may represent the pristine Variscan WNW, the Caledonoid NE and pervasive NNW trends. These islands in the estuary are sentinels at a boundary to the hybrid terrane that underlies SE Wales.</p><p>Mesozoic strata of marginal to distal facies, preserved close to negatively inverted faults with partial growth, mark the reactivated stems of Variscan ramps and NE disturbances with significant thrust displacements. We note two phases of negative inversion require restoration in order to reconstruct the orientations within the Variscan basement. In addition, close examination of late (Tertiary) fault history of the estuary is required to adjust basement trends and displacements to get a better sense of rotation within the Palaeozoic foreland.</p><p>Through restoration the new hybrid sub terrane preserves characteristics of Variscan and Caledonoid trending faults and we deduce that a rotation in major thrust trajectory occurred contemporaneously with reactivation of deeper lineaments. This was followed by a structural decapitation as shallow-level thrusts encroached SE Wales, during late stages of the Variscan Orogeny. Finally, the detached stems were incorporated into an imbricate fan which was significantly affected by post-Carboniferous inversion.   </p><p> </p><p> </p>


Water ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2434
Author(s):  
Guanghai Gao ◽  
Junqiang Xia ◽  
Roger A. Falconer ◽  
Yingying Wang

This paper presents a study of two transport timescales (TTS), i.e., the residence time and exposure time, of a hyper-tidal estuary using a widely used numerical model. The numerical model was calibrated against field measured data for various tidal conditions. The model simulated current speeds and directions generally agreed well with the field data. The model was then further developed and applied to study the two transport timescales, namely the exposure time and residence time for the hyper-tidal Severn Estuary. The numerical model predictions showed that the inflow from the River Severn under high flow conditions reduced the residence and exposure times by 1.5 to 3.5% for different tidal ranges and tracer release times. For spring tide conditions, releasing a tracer at high water reduced the residence time and exposure time by 49.0% and 11.9%, respectively, compared to releasing the tracer at low water. For neap tide conditions, releasing at high water reduced the residence time and exposure time by 31.6% and 8.0%, respectively, compared to releasing the tracer at low water level. The return coefficient was found to be vary between 0.75 and 0.88 for the different tidal conditions, which indicates that the returning water effects for different tidal ranges and release times are all relatively high. For all flow and tide conditions, the exposure times were significantly greater than the residence times, which demonstrated that there was a high possibility for water and/or pollutants to re-enter the Severn Estuary after leaving it on an ebb tide. The fractions of water and/or pollutants re-entering the estuary for spring and neap tide conditions were found to be very high, giving 0.75–0.81 for neap tides, and 0.79–0.88 for spring tides. For both the spring and neap tides, the residence and exposure times were lower for high water level release. Spring tide conditions gave significantly lower residence and exposure times. The spatial distribution of exposure and residence times showed that the flow from the River Severn only had a local effect on the upstream part of the estuary, for both the residence and exposure time.


2020 ◽  
Author(s):  
Andrea Gasparotto ◽  
Julian Leyland ◽  
Stephen Darby ◽  
Paul Carling

<p>Estuarine systems represent the dynamic transition zone between fluvial and marine systems and as such they are sensitive to changes in both domains resulting from impacts of climate change and human activities related to coastal and water-flow management especially in densely inhabited areas. Further, these tidally influenced systems are subject to a unique set of driving conditions linked to bidirectional flow processes. The potential growing risks of shoreline erosion in coastal, estuarine and inter-tidal environments have been identified by a number of studies in recent years. However, bank erosion processes in tidal settings remain poorly understood, especially when compared to the large volume of research concerning fluvial bank erosion. In general, the well-established fluvial bank erosion literature suggests that bankline erosion involves two main sets of processes: hydraulic erosion and gravitational collapse. Given the additional complexity of the process mechanics involved in tidal settings, arising mainly from the presence of bi-directional flows, process insights gained from studies of fluvial bank erosion might not be appropriately applied in a tidal context.</p><p>The present study aims to improve our understanding of estuarine bank mobility dynamics through investigation of the evolution and rates of bank retreat/accretion acting in the Severn Estuary (UK). The Severn Estuary has one of the highest semidiurnal tidal ranges in the world (about 15 m in the outer estuary, up to 8-9 m in the middle parts of the system, and 2 to 3 m in the inner river-dominated sector). Here we estimate bank mobility throughout the estuary from the river-dominated to the tidal-dominated zones during the last 119 years, via analysis of historical maps and recent satellite images. We use the findings from this analysis coupled with recent data collection to propose an empirical model of bank mobility throughout the entire estuary, highlighting the characteristics and the differences between riverine and coastal erosive processes. The model indicates that (i) the highest bank mobility (both in term of erosion and deposition) is located in the mid part of the estuary, close to the bedload convergence zone (BLZ), with other ‘hot spots’ of change linked to major anthropogenic disturbances either in the outer and inner estuary, and (ii) that the erosive mechanics associated to severe lateral land losses in the estuary are mainly driven by impulses in energy delivery to the bank surface in occasion of very high tidal oscillations (particularly in spring overbank tides) and severe storms triggering mass wasting in form of toppling and rotational failures.  </p>


2019 ◽  
Vol 5 (3) ◽  
pp. 217-226 ◽  
Author(s):  
Qian Ma ◽  
Tulio Marcondes Moreira ◽  
Thomas A. A. Adcock

2018 ◽  
Vol 1 (1 (Aug)) ◽  
pp. 19-26
Author(s):  
A. Vazquez ◽  
S. Astariz ◽  
G. Iglesias

Policy making is called to play a decisive role in the commercialisation of tidal stream energy projects. For they are site-specific, spatial targeting of policies is needed, so that tidal stream regulations (financial supporting mechanisms, consenting procedures, etc.) could be concentrated to sites where they can achieve the greatest benefits. With this in view, the aim of this paper is: (i) to develop a new method to delimit the most suitable (target) areas for tidal stream energy policy intervention within a coastal area of interest, and (ii) to apply it to the Bristol Channel and Severn Estuary (UK). The method includes spatial numerical analysis by means of a Matlab-based code coupled with a Navier-Stokes solver. The programme works in steps, in which different constraints are imposed with a view to carry out a zoning process. As a result of this zoning process, four hotspots are selected, for which a set of policy interventions is proposed. This includes the specific levels of subsidisation for closing the grid parity gap of potential projects in each area. The method can be viewed as a supporting decision mechanism for spatially targeted policy-making and management of tidal stream energy across the Bristol Channel and Severn Estuary.


Sign in / Sign up

Export Citation Format

Share Document