scholarly journals A technique of synthesis of unmanned aircraft control algorithms of a flat-symmetric scheme on the basis of the method of inverse problems of dynamics

2021 ◽  
Vol 1151 (1) ◽  
pp. 012034
Author(s):  
V N Sizykh ◽  
A V Daneev ◽  
M V Bakanov ◽  
R A Daneev
2020 ◽  
Vol 92 (8) ◽  
pp. 1215-1224
Author(s):  
Tomasz Rogalski ◽  
Paweł Rzucidło ◽  
Jacek Prusik

Purpose The paper aims to present an idea of automatic control algorithms dedicated to both small manned and unmanned aircraft, capable to perform spin maneuver automatically. This is a case of maneuver far away from so-called standard flight. The character of this maneuver and the range of aircraft flight parameters changes restrict application of standard control algorithms. Possibility of acquisition full information about aircraft flight parameters is limited as well in such cases. This paper analyses an alternative solution that can be applied in some specific cases. Design/methodology/approach The paper uses theoretical discussion and breakdowns to create basics for development of structures of control algorithms. Simplified analytical approach was applied to tune regulators. Results of research were verified in series of software-in-the loop, computer simulations. Findings The structure of the control system enabling aerobatic flight (spin flight as example selected) was found and the method how to tune regulators was presented as well. Practical implications It could be a fundament for autopilots working in non-conventional flight states and aircraft automatic recovery systems. Originality/value The paper presents author’s original approach to aircraft automatic control when high control precision is not the priority, and not all flight parameters can be precisely measured.


Aviation ◽  
2007 ◽  
Vol 11 (1) ◽  
pp. 23-27 ◽  
Author(s):  
Bogusław Dołega ◽  
Paweł Rzucidło

The Fly‐by‐Wire technology enables flexible shaping of both effective dynamics and handling qualities of aircraft. This solution extends aircraft possibilities and supports the pilot by use of high‐level control laws. Application of FBW for aircraft would make flying both safer, and more popular. On the other hand the FBW system must be highly reliable. Advanced indirect flight control technology requires the use of actuators characterized by fault tolerant architecture. It should enable improvement of reliability of the aircraft control system and safety of performed flights effectively. The Electromechanical Actuator (EMA) consists of the electric motor, gearbox and controller. The actuator controller should be made intrinsically reliable and should be insensitive to other equipment failure. The conception of fault tolerant control algorithms as well as practical realization of it has been presented in this work. Tests of reliability of the complete EMA unit have also been presented herein.


2021 ◽  
Vol 55 (1 (254)) ◽  
pp. 56-63
Author(s):  
Arman S. Shahinyan

The linearized dynamics of a UAV is considered along with a pendulum hanging from it. The state trajectories of the center of mass of the UAV are given. Given the trajectory of the center of mass of the UAV and the state trajectory of its yaw angle, we have to find the control actions and conditions under which the UAV would follow the path while holding the pendulum stable around its lower equilibrium point. The problem is solved using the method for solving inverse problems of dynamics. All the state trajectories of the system and all the control actions are calculated. The condition is obtained under which a solution to the path following problem exists. A specified simple trajectory is chosen as an example for visualizing the results.


Sign in / Sign up

Export Citation Format

Share Document