scholarly journals PATH FOLLOWING PROBLEM FOR UAV CARRYING PENDULUM

2021 ◽  
Vol 55 (1 (254)) ◽  
pp. 56-63
Author(s):  
Arman S. Shahinyan

The linearized dynamics of a UAV is considered along with a pendulum hanging from it. The state trajectories of the center of mass of the UAV are given. Given the trajectory of the center of mass of the UAV and the state trajectory of its yaw angle, we have to find the control actions and conditions under which the UAV would follow the path while holding the pendulum stable around its lower equilibrium point. The problem is solved using the method for solving inverse problems of dynamics. All the state trajectories of the system and all the control actions are calculated. The condition is obtained under which a solution to the path following problem exists. A specified simple trajectory is chosen as an example for visualizing the results.

2019 ◽  
Vol 27 (4) ◽  
pp. 79-85
Author(s):  
Aramis Viktorovich Tishchenko ◽  
Anatoly Mikhailovich Kulabukhov ◽  
Victor Alexandrovich Masalskiy

The article presents the synthesis of a functional diagram of an adaptive automatic control system (ACS) for controlling an aircraft with an automatically reconfigurable multidimensional PI controller, which provides the minimum static and minimum mean square error of control with minimal energy consumption for the formation of the control exposure. The synthesis of ACS algorithms is performed as a result of solving the problem of conditionally minimizing the quadratic functional of the generalized work (taking into account restrictions on state variables and control actions given by differential equations of the control object (CO) and inequalities). The mathematical description of the multidimensional CO is carried out using the CO model in the state space, which automatically takes into account the mutual influence of individual control loops on each other. As the state variables of the aircraft, linear displacements, speeds and accelerations of the center of mass of the aircraft, and angular displacements, speeds and accelerations of the rotational movement of the aircraft relative to the center of mass are used. The matrix equation of dynamics of the aircraft is formed by a system of nonlinear differential equations of the first order of forces and moments of forces acting on the aircraft. To ensure the minimum static control error, integrators are included in the ACS (for each control action). The algorithm for the formation of control actions of the extended CO, providing the declared properties of the ACS, is obtained as a result of solving the problem of conditional minimization of the generalized work functional. The task of conditional minimization of a functional with constraints is performed by the maximum principle. The resulting two-point boundary value problem is transformed by the invariant immersion method into a Cauchy problem for optimal values of state variables. The evaluation of the characteristics of a specific adaptive ACS for the spacecraft is expected to be obtained as a result of further research by mathematical modeling.


2021 ◽  
Author(s):  
M. A. Alolayan ◽  
◽  
F. M. Albarrak ◽  
M. H. Abotalib ◽  
M. A. Alshawaf ◽  
...  

The net benefits and public acceptance for a proposed reform to the current subsidization of energy in the State of Kuwait was investigated in this study. The proposed subsidization suggests that the government pays the consumers the subsidization cost in advance and in exchange for raising the subsidized tariffs to full price. The consumption will likely be reduced by a rate equals the over consumption due to the current subsidized tariffs in relative to the income. The net benefits is expected to be maximized and shifted to a pseudo-equilibrium point where both the governments and the consumers will be better off financially. The public acceptance toward the proposed strategy was examined using 274 voluntarily one-to-one interviews for gasoline and 121 for electricity and water. Also, a utilities meters reading program was conducted on 90 houses out of the 121 interviews for utilities. The interviews for gasoline and utilities indicated 57% and 66% of the respondents see no equity in the current subsidization, 55% and 80% admitted to overuse, and 11% and 21% averages of the over consumptions, and 67% and 66% of the respondents were willing to adopt the new strategy. The consumer is expected to save 912 USD/year from gasoline, and 8,198 USD/year from utilities. The estimated net benefits is 5,841 million USD annually with 62% attributed to utilities benefits and 38% to gasoline benefits.


Author(s):  
Muhammad Basri Hasan

In realizing yaw angle control tracking on AUV, the use of the State Dependent Riccati Equations method based on Linear Quadratic Tracking (SDRE-LQT) is realized. This algorithm calculates changes in yaw angle tracking problems through calculation of parameter changes from online AUV with Algebraic Riccati Equations.So that the control signal given to the plant can follow the changing conditions of the plant itself. 


2005 ◽  
Vol 128 (4) ◽  
pp. 687-698 ◽  
Author(s):  
Mukund Narasimhan ◽  
Haibo Dong ◽  
Rajat Mittal ◽  
Sahjendra N. Singh

This paper treats the question of control of a biorobotic autonomous undersea vehicle (BAUV) in the yaw plane using a biomimetic mechanism resembling the pectoral fins of fish. These fins are assumed to undergo a combined sway-yaw motion and the bias angle is treated as a control input, which is varied in time to accomplish the maneuver in the yaw-plane. The forces and moments produced by the flapping foil are parametrized using computational fluid dynamics. A finite-difference-based, Cartesian grid immersed boundary solver is used to simulate flow past the flapping foils. The periodic forces and moments are expanded as a Fourier series and a discrete-time model of the BAUV is developed for the purpose of control. An optimal control system for the set point control of the yaw angle and an inverse control law for the tracking of time-varying yaw angle trajectories are designed. Simulation results show that in the closed-loop system, the yaw angle follows commanded sinusoidal trajectories and the segments of the intersample yaw trajectory remain close to the discrete-time reference trajectory. It is also found that the fins suitably located near the center of mass of the vehicle provide better maneuverability.


2011 ◽  
Vol 48-49 ◽  
pp. 391-396
Author(s):  
Yu Long Ma ◽  
Jian Da Han ◽  
Yu Qing He

Unmanned surface vehicle (USV) system has been one of main research directions in mobile robotics because it can be used in many situations. However, high performance path following control, especially straight line tracking control, has been one of the difficult problems in autonomous control of USV system. In this paper, we propose a new straight line path following control algorithm by combining yaw angle feedback and back-stepping technique and show its closed loop stability. The most absorbing advantage of the proposed controller is that it not only reserve the good performance of back-stepping controller but also bring much faster convergent rate, which is very important in real applications. The simulation results with respect to a training ship model have shown the feasibility and validity of the proposed method.


2021 ◽  
Vol 103 (4) ◽  
Author(s):  
Bartomeu Rubí ◽  
Bernardo Morcego ◽  
Ramon Pérez

AbstractA deep reinforcement learning approach for solving the quadrotor path following and obstacle avoidance problem is proposed in this paper. The problem is solved with two agents: one for the path following task and another one for the obstacle avoidance task. A novel structure is proposed, where the action computed by the obstacle avoidance agent becomes the state of the path following agent. Compared to traditional deep reinforcement learning approaches, the proposed method allows to interpret the training process outcomes, is faster and can be safely trained on the real quadrotor. Both agents implement the Deep Deterministic Policy Gradient algorithm. The path following agent was developed in a previous work. The obstacle avoidance agent uses the information provided by a low-cost LIDAR to detect obstacles around the vehicle. Since LIDAR has a narrow field-of-view, an approach for providing the agent with a memory of the previously seen obstacles is developed. A detailed description of the process of defining the state vector, the reward function and the action of this agent is given. The agents are programmed in python/tensorflow and are trained and tested in the RotorS/gazebo platform. Simulations results prove the validity of the proposed approach.


2018 ◽  
Vol 1 (1 (Aug)) ◽  
pp. 41-50 ◽  
Author(s):  
P. Modali ◽  
N. S. Kolekar ◽  
A. Banerjee

In tidal streams and rivers, the flow of water can be at yaw to the turbine rotor plane causing performance degradation and a skewed downstream wake. The current study aims to quantify the performance variation and associated wake behavior caused by a tidal turbine operating in a yawed inflow environment. A three-dimensional computational fluid dynamics study was carried out using multiple reference frame approach using κ-ω SST turbulence model with curvature correction. The computations were validated by comparison with experimental results on a 1:20 scale prototype for a 0° yaw case performed in a laboratory flume. The simulations were performed using a three-bladed, constant chord, untwisted tidal turbine operating at uniform inflow. Yaw effects were observed for angles ranging from 5° to 15°. An increase in yaw over this range caused a power coefficient deficit of 26% and a thrust coefficient deficit of about 8% at a tip speed ratio of 5 that corresponds to the maximum power coefficient for the tested turbine. In addition, wake propagation was studied up to a downstream distance of ten rotor radius, and skewness in the wake, proportional to yaw angle was observed. At higher yaw angles, the flow around the turbine rotor was found to cushion the tip vortices, accelerating the interaction between the tip vortices and the skewed wake, thereby facilitating a faster wake recovery. The center of the wake was tracked using a center of mass technique. The center of wake analysis was used to better quantify the deviation of the wake with increasing yaw angle. It was observed that with an increase in yaw angle, the recovery distance moved closer to the rotor plane. The wake was noticed to meander around the turbine centerline with increasing downstream distance and slightly deviate towards the free surface above the turbine centerline, magnitude of which varied depending on yaw.


Sign in / Sign up

Export Citation Format

Share Document