scholarly journals Modeling of the stress-strain state of reinforced concrete beams under prolonged load action

2021 ◽  
Vol 1162 (1) ◽  
pp. 012004
Author(s):  
Z Holovata ◽  
S Neutov ◽  
M Surianinov
Author(s):  
I.S. Bondar ◽  
◽  
Al Dulaimi Salman Dawood Salman ◽  
D.T. Aldekeyeva ◽  
R.S. Imambaeva ◽  
...  

The article examines field studies of reinforced concrete beams, fracture schemes, and the nature of the formation, development of cracks in reinforced concrete elements. Modeling the stress-strain state of reinforced concrete beams in the ANSYS software and computational complex, comparing the results of field and numerical studies. A method of finite element modeling of beams reinforced with fiber plastics (carbon fiber reinforced plastics) is proposed. A comparison of fracturing schemes obtained as a result of numerical simulation is presented.


2020 ◽  
Vol 2 (1) ◽  
pp. 207-214
Author(s):  
Vasyl Karpiuk ◽  
Yuliia Somina ◽  
Oksana Maistrenko ◽  
Fedir Karpiuk

AbstractThe paper deals with the working peculiarities of the support zones of reinforced concrete elements subject to bending with due account of the eccentric compression and tension. The authors performed simulation of the stress-strain behaviour of the indicated structures with the aid of “Lira” software which results are shown in the graphical and tabulated form. The performed simulation allowed of tracing the work of the studied sample beams till collapse. Such approach made it possible to single out and generalize the main collapse patterns of the inclined cross-sections of the reinforced concrete elements subject to bending on which basis the authors developed the improved method to calculate their strength (Karpiuk et al., 2019).


2014 ◽  
Vol 13 (3) ◽  
pp. 065-070
Author(s):  
Zinoviy Blikharskyy ◽  
Dmytro Dubizhanskyy ◽  
Roman Khmil

Bearing capacity of normal cross section of bending concrete elements reinforced with reinforced concrete ring under load was investigated. Experimental researches of 4 sets of beams with the total number of 16 units were carried out. The results of changes of stress-strain state settings depending on the load level, additional reinforcement, influence of limit level load were analyzed. The three characteristic stages of stress-strain state of reinforced concrete beams strengthened with reinforced concrete ring were defined. Results of experimental investigations of bearing capacity of normal cross section of strengthened beams with reinforced concrete ring under load were presented. Enhancing effect was calculated. According to the results of researches of strengthened beams plots of strain of working armature depending on current bending moment were constructed.


2020 ◽  
Vol 14 (4) ◽  
pp. 466-472
Author(s):  
Zeljko Kos ◽  
Yevhenii Klymenko ◽  
Kostiantyn Polianskyi ◽  
Andjelko Crnoja

The article is devoted to studies about the stress-strain state and the residual bearing capacity of inclined sections of reinforced concrete beams with concrete damages in the compressed zone near support areas. The developed method of calculating the bearing capacity of the inclined sections of damaged beams is described. The numerical test of prototypes was performed in the LIRA-CAD 2017 software complex. A comparison of the results of laboratory tests, a numerical experiment and calculation results by the proposed method is shown. It is stressed that with an increase in the area of damage, the bearing capacity decreases. The nature of the change in the stress-strain state under the presence of damage is described. It is pointed out that in the damaged samples, there is an inclination of the neutral axis in the cross section of the element – it tilts, the neutral axis becomes, almost, parallel to the front of the damage.


Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1579 ◽  
Author(s):  
Alexey Beskopylny ◽  
Besarion Meskhi ◽  
Elena Kadomtseva ◽  
Grigory Strelnikov

This article is devoted to the stress–strain state (SSS) study of metal and reinforced fiber-reinforced concrete beam under static and shock loading, depending on the bimodularity of the material, the mass of the beam, and the location of the reinforcing bars in zones under tension and compression. It is known that many materials have different tensile and compression properties, but in most cases, this is not taken into account. The calculations were carried out by using load-bearing metal beams made of silumin and steel and reinforced concrete beams under the action of a concentrated force applied in the middle of the span. The impact load is considered as the plastic action of an absolutely rigid body on the elastic system, taking into account the hypothesis of proportionality of the dynamic and static characteristics of the stress–strain state of the body. The dependences of the maximum dynamic normal stresses on the number of locations of reinforcing bars in zones under tension and compression, the bimodularity of the material, and the reduced mass of the beam are obtained. A numerical study of SSS for metal and concrete beams has shown that bimodularity allows the prediction of beam deflections and normal stresses more accurately.


Sign in / Sign up

Export Citation Format

Share Document