scholarly journals Pure oxygen separation from air using dual-phase SDC-SCFZ disc membrane: A modelling approach

2021 ◽  
Vol 1195 (1) ◽  
pp. 012060
Author(s):  
J Chua ◽  
C Li ◽  
J Sunarso

Abstract Novel Ce0.8Sm0.2O1.9-SrCo0.4Fe0.55Zr0.05O3-δ (SDC-SCFZ) disc membranes consist of 25 wt.% SDC fluorite ionic conducting phase and 75 wt.% SCFZ perovskite mixed conducting phase, which is more promising than perovskite oxide SCFZ single-phase membrane in terms of the oxygen permeation flux. This work features a modelling approach to simulate the oxygen permeation fluxes of the SDC-SCFZ membrane. Simplified model equations from the Zhu model and Xu-Thomson model based on the limiting cases of surface exchange reactions and bulk diffusion are compared. The Zhu model is found to be more applicable for the membranes with overall good correlation and low sum of squared error. Furthermore, modelling studies revealed that the oxygen transport is limited by surface exchange reactions from 700 to 850 °C and a mixture of both limiting cases above 850 up to 950 °C. It is concluded that the membranes exhibit high oxygen permeation flux of up to 2×10−6 mol s−1 cm−2 at 950 °C with Pair of 5 atm and Po 2 of 0.005 atm. The optimum range of operating conditions of the membrane are found to be at 950 °C with minimum Pair of 1 atm and P11 2 lower than 0.025 atm.

2010 ◽  
Vol 156-157 ◽  
pp. 1024-1028
Author(s):  
Da Hai Hu ◽  
Xiong Gang Lu ◽  
Hong Wei Cheng ◽  
Wei Zhong Ding

The performance of Ni/SiO2 Catalysts modified by La2O3, ZrO2 and CeO2 were tested in a BaCo0.7Fe0.2Nb0.1O3-δ (BCFNO) membrane reactor by catalytic partial oxidation of coke oven gas (COG) under atmospheric pressure. The results show that the oxygen permeation flux increased dramatically with Ni/RxOy/SiO2 (R = La, Zr or Ce) catalysts by adding the element of rare earth especially the La during the reforming reaction. At optimized reaction conditions, the dense oxygen permeable membrane had an oxygen permeation flux around 16.4 ml/cm2•min and a CH4 conversion of 99.2% have been achieved at 900 oC.


2011 ◽  
Vol 377 (1-2) ◽  
pp. 198-205 ◽  
Author(s):  
S. Baumann ◽  
J.M. Serra ◽  
M.P. Lobera ◽  
S. Escolástico ◽  
F. Schulze-Küppers ◽  
...  

2010 ◽  
Vol 154-155 ◽  
pp. 877-881 ◽  
Author(s):  
Hong Wei Cheng ◽  
Xiong Gang Lu ◽  
Da Hai Hu ◽  
Yu Wen Zhang ◽  
Wei Zhong Ding ◽  
...  

The BaCo0.7Fe0.2Nb0.1O3-δ (BCFNO) membranes combined with Ce0.8Re0.2O2-δ (Re=La, Y) layer on the permeation side were used for hydrogen production by partial oxidation reforming of coke oven gas (COG). The Ce0.8Re0.2O2-δ improved the oxygen permeation flux of the membrane by 11–28% at 750 oC. The high oxygen permeation flux achieved using the Ce0.8Re0.2O2-δ surface-coating layer in this work are quite encouraging with a maximum value reaching 19.7 ml/cm2•min at 900 oC, which will be promising surface modification materials in the catalytic partial oxidation reforming of COG.


AIChE Journal ◽  
2010 ◽  
Vol 56 (12) ◽  
pp. 3084-3090 ◽  
Author(s):  
Barbara Zydorczak ◽  
Kang Li ◽  
Xiaoyao Tan

2005 ◽  
Vol 885 ◽  
Author(s):  
Hitoshi Takamura ◽  
Masayuki Ogawa ◽  
Yusuke Aizumi ◽  
Atsunori Kamegawa ◽  
Masuo Okada

ABSTRACTThis paper describes preparation and methane reforming characteristics of a proto-type reformer based on a composite-type oxygen permeable membrane. The tape-cast membrane of Sm-doped CeO2 and 15 vol% MnFe2O4 composite was combined with ferric stainless steel separator with a same thermal expansion coefficient. For the reformer module, high CH4 conversion, CO and H2 selectivity of 96%, 84% and 89% were achieved, respectively. Based on C, H and O balances, oxygen permeation flux was found to be 5.7 mu-mol/cm2s. Joule heat caused by the oxygen permeation was estimated to be approximately 17.5 W, and this covered most part of heat required for reforming reactions.


2013 ◽  
Vol 2013 ◽  
pp. 1-6
Author(s):  
Yuan Qiang ◽  
Zhen Qiang ◽  
Li Rong

BaCo0.7Fe0.2Nb0.1O3−δ(BCFN) dense ceramic membrane with submicron-Ce0.8Y0.2O2−δ(YDC) porous layer was investigated by the partial oxidation of coke oven gas (COG) in hydrogen production. XRD analysis showed this composite had good stability and no chemical reaction at high temperature. SEM and TEM characterization further showed BCFN membrane was uniformly modified by YDC porous layer (about 5~6 μm thickness) formed by the accumulation of relative nanoparticles. At the respective COG flux and air flux of 108 mL/min and 173 mL/min, the oxygen permeation flux of BCFN modified by submicron-YDC porous layer reached 16.62 mL·min−1·cm−2, which was about 23.5% higher than that of pure BCFN membrane. Therefore, submicron-YDC porous layer obviously improved the oxygen permeation flux of BCFN membrane and its stability at 875°C.


2014 ◽  
Vol 628 ◽  
pp. 319-322
Author(s):  
Zhi Bin Yang

In this paper we found two catalysts exhibit high catalytic activity and stability during the partial oxidation of methane (POM) in Coke oven gas (COG) in BCFNO membrane reactor. Such as the NiO/MgO catalyst, we discussed the COG and air flow rate on the performance of reforming of COG. The results show that the NiO/MgO catalyst exhibits high activity. The experimental result of the CH4 conversion, selectivity of H2 and CO were suited well to the result of thermodynamic analysis. And the LiNiCeO/γ-Al2O3 catalyst, we discussed the LiNiCeO/γ-Al2O3 catalysts with different amount CeO2 in order to compare the reaction performance on the membrane reactor. The results show that the oxygen permeation flux increased significantly with increasing the amount of CeO2 during the POM in COG. Such as, the LiNi15%CeO/γ-Al2O3 catalyst with a oxygen permeation flux of 10.6 ml⋅cm-2⋅min-1 and a 100% CH4 conversion were obtained at 875 oC.


RSC Advances ◽  
2016 ◽  
Vol 6 (2) ◽  
pp. 882-890 ◽  
Author(s):  
Quazi Arif Islam ◽  
Mir Wasim Raja ◽  
Sandip Bysakh ◽  
Rajendra Nath Basu

Membrane synthesized by filter paper templating method shows higher oxygen permeation flux than similar type membranes developed by conventional methodologies.


2011 ◽  
Vol 311-313 ◽  
pp. 2397-2400
Author(s):  
Zi Gang Shen ◽  
Xiao Rui Guo ◽  
Wu Qing Zhang ◽  
Li Jun Pan

A cross-shaped pattern was formed on the surface of Ba0.5Sr0.5Co0.8Fe0.2O3−δoxygen permeation membrane by laser ablation in order to increase the specific surface area of the membrane. The membrane was used to assemble a reactor for partial oxidation of methane (POM) to syngas in the present of Ni/ZrO2catalyst. The CH4conversion and CO selectivity of the membrane reactor can reach 98.8% and 91.5%, respectively, and the oxygen permeation flux through the membrane was 11.0 ml/cm2min at 850°C. The effect of space velocity (SV) on CH4conversion rate and CO selectivity in such reactor was discussed.


Sign in / Sign up

Export Citation Format

Share Document