scholarly journals Heat transfer and flow friction correlations for perforated plate matrix heat exchangers

Author(s):  
L Ratna Raju ◽  
S Sunil Kumar ◽  
K Chowdhury ◽  
T K Nandi
2021 ◽  
Vol 24 (1) ◽  
pp. 29-40
Author(s):  
Claudia Bogdan ◽  
Catalin Brill ◽  
Oleksandr Sirosh ◽  
Mihai Vijulie ◽  
Alin Lazar

While the basic principles of thermodynamics have remained the same, the necessity for heat exchangers to have good effectiveness in a small volume is constantly growing. Heat exchangers type Matrix Heat Exchanger (MHE), which can meet these requirements, does not have an optimal design variant for its use. These heat exchangers have been approached for 60 years, by many researchers, currently offering only an overview of the process. The mechanism of heat transfer in a matrix heat exchanger is complex, having three different thermal convection paths as well as thermal conduction through two different surfaces. This paper presents the simulations performed in ANSYS Workbench, combining all these heat transfer modes, for developing an optimal model of a perforated plate matrix heat exchanger, used for the pre-cooling of a hydrogen isotopes stream mixture, for purification purposes, as well as, for preparing the inlet temperature in cryogenic distillation columns of hydrogen isotopes.


2019 ◽  
Vol 23 (1) ◽  
pp. 11-21
Author(s):  
Mladen Tomic ◽  
Predrag Zivkovic ◽  
Biljana Milutinovic ◽  
Mica Vukic ◽  
Aleksandar Andjelkovic

The need for compact heat exchangers has led to the development of many types of surfaces that enhance the rate of heat transfer, among them the matrix heat exchangers. These heat exchangers consist of a series of perforated plates mutually separated and sealed by spacers. The goal of this research was to investigate the heat transfer process of matrix heat exchangers on the air side, at the close to ambient conditions. The research was conducted in two directions ? experimental research and CFD research. The experimental investigation was carried out over a perforated plate package with the porosity of 25.6%. The air/water matrix heat exchanger was heated by hot water and was installed in an experimental chamber at which entrance was a fan with the variable flow rate and heated by hot water. The thermocouples were attached to the surface of the perforated plate at the upwind and downwind sides, as well as at the inlet and the outlet of the chamber. During each experiment, the thermocouple readings and the air and water-flow and temperatures were recorded. In the numerical part of the research, the matrix heat exchangers with different plate porosity from 10 to 50% were investigated. The results of the numerical simulations were validated against the experimental results. On the basis of the experimental and numerical results, equations for heat transfer as the function of Reynolds number and geometrical parameters was established.


1995 ◽  
Vol 10 (2) ◽  
pp. 238-247 ◽  
Author(s):  
Michael J. Nilles ◽  
Myron E. Calkins ◽  
Michael L. Dingus ◽  
John B. Hendricks

2010 ◽  
Vol 132 (11) ◽  
Author(s):  
M. J. White ◽  
G. F. Nellis ◽  
S. A. Klein ◽  
W. Zhu ◽  
Y. Gianchandani

Cryogenic and high-temperature systems often require compact heat exchangers with a high resistance to axial conduction in order to control the heat transfer induced by axial temperature differences. One attractive design for such applications is a perforated plate heat exchanger that utilizes high conductivity perforated plates to provide the stream-to-stream heat transfer and low conductivity spacers to prevent axial conduction between the perforated plates. This paper presents a numerical model of a perforated plate heat exchanger that accounts for axial conduction, external parasitic heat loads, variable fluid and material properties, and conduction to and from the ends of the heat exchanger. The numerical model is validated by experimentally testing several perforated plate heat exchangers that are fabricated using microelectromechanical systems based manufacturing methods. This type of heat exchanger was investigated for potential use in a cryosurgical probe. One of these heat exchangers included perforated plates with integrated platinum resistance thermometers. These plates provided in situ measurements of the internal temperature distribution in addition to the temperature, pressure, and flow rate measured at the inlet and exit ports of the device. The platinum wires were deposited between the fluid passages on the perforated plate and are used to measure the temperature at the interface between the wall material and the flowing fluid. The experimental testing demonstrates the ability of the numerical model to accurately predict both the overall performance and the internal temperature distribution of perforated plate heat exchangers over a range of geometry and operating conditions. The parameters that were varied include the axial length, temperature range, mass flow rate, and working fluid.


1960 ◽  
Vol 82 (3) ◽  
pp. 199-213 ◽  
Author(s):  
A. L. London ◽  
J. W. Mitchell ◽  
W. A. Sutherland

The paper presents a continuation of the program on porous media heat-transfer and flow-friction behavior previously covered in References [2b] and [3b]. All the previous results of interest to the designer on woven-screen matrices and crossed-rod matrices of a random configuration are summarized here. In addition, new design results for the regular in-line and regular staggered crossed-rod-matrix configurations are reported. Matrices of the type considered here may find application as heat-transfer surface geometries for nuclear-reactor fuel elements, for electrical resistance heaters and for periodic-flow-type heat exchangers used for gas-turbine regenerators, and some air-conditioning applications.


Sign in / Sign up

Export Citation Format

Share Document