scholarly journals An Experimentally Validated Numerical Modeling Technique for Perforated Plate Heat Exchangers

2010 ◽  
Vol 132 (11) ◽  
Author(s):  
M. J. White ◽  
G. F. Nellis ◽  
S. A. Klein ◽  
W. Zhu ◽  
Y. Gianchandani

Cryogenic and high-temperature systems often require compact heat exchangers with a high resistance to axial conduction in order to control the heat transfer induced by axial temperature differences. One attractive design for such applications is a perforated plate heat exchanger that utilizes high conductivity perforated plates to provide the stream-to-stream heat transfer and low conductivity spacers to prevent axial conduction between the perforated plates. This paper presents a numerical model of a perforated plate heat exchanger that accounts for axial conduction, external parasitic heat loads, variable fluid and material properties, and conduction to and from the ends of the heat exchanger. The numerical model is validated by experimentally testing several perforated plate heat exchangers that are fabricated using microelectromechanical systems based manufacturing methods. This type of heat exchanger was investigated for potential use in a cryosurgical probe. One of these heat exchangers included perforated plates with integrated platinum resistance thermometers. These plates provided in situ measurements of the internal temperature distribution in addition to the temperature, pressure, and flow rate measured at the inlet and exit ports of the device. The platinum wires were deposited between the fluid passages on the perforated plate and are used to measure the temperature at the interface between the wall material and the flowing fluid. The experimental testing demonstrates the ability of the numerical model to accurately predict both the overall performance and the internal temperature distribution of perforated plate heat exchangers over a range of geometry and operating conditions. The parameters that were varied include the axial length, temperature range, mass flow rate, and working fluid.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Faraz Afshari ◽  
Azim Doğuş Tuncer ◽  
Adnan Sözen ◽  
Halil Ibrahim Variyenli ◽  
Ataollah Khanlari ◽  
...  

Purpose Using suspended nanoparticles in the base fluid is known as one of the most efficient ways for heat transfer augmentation and improving the thermal efficiency of various heat exchangers. Different types of nanofluids are available and used in different applications. The main purpose of this study is to investigate the effects of using hybrid nanofluid and number of plates on the performance of plate heat exchanger. In this study, TiO2/water single nanofluid and TiO2-Al2O3/water hybrid nanofluid with 1% particle weight ratio have been used to prepare hybrid nanofluid to use in plate type heat exchangers with three various number of plates including 8, 12 and 16. Design/methodology/approach The experiments have been conducted with the aim of examining the impact of plates number and used nanofluids on heat transfer enhancement. The performance tests have been done at 40°C, 45°C, 50°C and 55°C set outlet temperatures and in five various Reynolds numbers between 1,600 and 3,800. Also, numerical simulation has been applied to verify the heat and flow behavior inside the heat exchangers. Findings The results indicated that using both nanofluids raised the thermal performance of all tested exchangers which have a various number of plates. While the major outcomes of this study showed that TiO2-Al2O3/water hybrid nanofluid has priority when compared to TiO2/water single type nanofluid. Utilization of TiO2-Al2O3/water nanofluid led to obtaining an average improvement of 7.5%, 9.6% and 12.3% in heat transfer of heat exchangers with 8, 12 and 16 plates, respectively. Originality/value In the present work, experimental and numerical analyzes have been conducted to investigate the influence of using TiO2-Al2O3/water hybrid nanofluid in various plate heat exchangers. The attained findings showed successful utilization of TiO2-Al2O3/water nanofluid. Based on the obtained results increasing the number of plates in the heat exchanger caused to obtain more increment by using both types of nanofluids.


2017 ◽  
Vol 71 (5) ◽  
pp. 439-449
Author(s):  
Nikola Zlatkovic ◽  
Divna Majstorovic ◽  
Mirjana Kijevcanin ◽  
Emila Zivkovic

Plate heat exchanger is a type of heat exchanger that uses corrugated metal plates to transfer heat between two fluids. The plate corrugations are designed to achieve turbulence across the entire heat transfer area thus producing the highest possible heat transfer coefficients while allowing close temperature approaches. Subsequently, this leads to a smaller heat transfer area, smaller units and in some cases, fewer heat exchangers. In this work, an application for thermal and hydraulic computations of plate heat exchangers had been developed using Sharp Develop, an open source programming platform. During the development process, several literature methods and correlations for calculation of heat transfer coefficient and pressure drop in a plate heat exchanger have been tested and the selected four methods: Martin, VDI, Kumar and Coulson and Richardson have been incorporated into the software. The structure of the software is visually presented through several windows: a window for inserting input data, windows for showing the results of computation by each of the methods, a window for showing comparative analysis of the most important computation results obtained by all of the used methods and a help window for demonstrating the working principle of plate heat exchanger.


2013 ◽  
Vol 597 ◽  
pp. 63-74 ◽  
Author(s):  
Jan Wajs ◽  
Dariusz Mikielewicz

In the paper the experimental analysis of passive heat transfer intensification in the case of modeled plate heat exchanger is conducted. The plate heat exchanger is chosen for the analysis because this kind of heat exchangers could be prospectively applied in the ORC systems, however other areas or application are equally possible. The experimental set-up was assembled at the Department of Energy and Industrial Apparatus of Gdansk University of Technology. The passive intensification was obtained by a modification of the heat transfer surface. The roughness of surface was increased by use of glass shot.During the experiment single-phase convective heat transfer in the single phase system was studied. The experiment was done in two stages. In the first stage the model of commercial plate heat exchanger was investigated, while in the second stage the identical one but with modified heat transfer surface. Model of heat exchanger consisted of three plates. The direct comparison of thermal and flow characteristics between both devices was possible due to assurance of equivalent conditions at the inlet to the system.The thermal and hydraulic characteristics are presented. The thermal analysis shows that in some range of heat flux density the overall heat transfer coefficient was higher for the commercial heat exchanger, while for the other was higher for the heat exchanger with modified surface. The influence of larger roughness on heat transfer cannot unequivocally be evaluated. Therefore as the next step the systematic investigations of model heat exchangers (only with one hot and one cold passage) will be conducted.


Author(s):  
Harsh Tamakuwala ◽  
Ryan Von Ness ◽  
Debjyoti Banerjee

Plate-fin heat exchangers are widely used in industries especially aerospace, cryogenics, food and chemical process industries where high heat flux surface area per unit volume is of prime importance. These heat exchangers consists of series of corrugated plates (herringbone or chevron), separated by gasket sealing. Chevron angled plates are one of the most commonly used type of geometry. The complex design of chevron plate heat exchanger, induces high turbulence and flow reversals causing high heat transfer through the plates. This paper discusses about the computational fluid dynamics simulations conducted over a simplified geometry of Chevron Plate Heat Exchanger to understand the formulation of vortices at different Reynold’s number for various aspect ratios. A single phase laminar flow with periodic boundary condition is used for analysis of the fluid behavior in a unit pattern of the corrugation geometry. Based on different flow and geometric conditions, varying amounts of swirl-flows are observed and different behavior of shear stress and heat transfer plot along the length of the plate is observed. At higher Reynolds numbers (Re), the re-circulations and mixing by the induced vortices causes significant rise of heat flux, with marginal increase in friction factor.


2016 ◽  
Vol 20 (suppl. 5) ◽  
pp. 1251-1257
Author(s):  
Predrag Zivkovic ◽  
Mladen Tomic ◽  
Jelena Janevski ◽  
Zana Stevanovic ◽  
Biljana Milutinovic ◽  
...  

The need for compact heat exchangers has led to the development of many types of surfaces that enhance the rate of heat transfer, among them the perforated plate heat exchangers, also known as matrix heat exchangers. The perforated plate heat exchangers consist of a series of perforated plates that are separated by a series of spacers. The present study investigates the heat transfer characteristics of the package of perforated plates. Perforated plates were 2 mm thick, with holes with 2 mm in diameter and porosity of 25.6%. The package of one, two, and three perforated plates was set in the channel of the experimental chamber at which entrance was a thrust fan with the ability to control the flow rate. The fluid flow rates, the temperatures of the fluids at the inlet and outlet of the chamber and the temperature of the air between the plates, were measured at the predefined locations in the package and the experimental chamber. Based on the measurements, heat transfer coefficients for the individual plates, as well as for the packages of perforated plates were determined. In further research, an iterative analytical procedure for investigation of the heat transfer process and the overall heat transfer coefficient for the package of perforated plates were developed. Based on these analytical and experimental results, conclusions were drawn about the heat transfer in a package of perforated plates.


2008 ◽  
Author(s):  
Mehdi Nasrabadi ◽  
Ramin Haghighi Khoshkhoo

A heat exchanger is a part of micro turbines, which can improve thermal efficiency of micro turbines up to 30 percent. Some important factors in design of heat exchangers are low cost, high efficiency, small size, low weight and high performance. In this paper, design of a heat exchanger with consideration of Iranian industry’s capability has been investigated. A survey of different types of gas to-gas heat exchangers is presented and then fin-tube heat exchanger, fin-plate heat exchanger, shell & tube heat exchanger and regenerator are designed. Also, the effect of thermo hydraulic parameters on the efficiency of the three heat exchangers is investigated. Effects of these heat exchangers on the efficiency of a 100 kW micro turbine are studied and the heat exchanger with the highest efficiency is selected. The algorithm for design and modeling of the selected heat exchanger is then presented. After research on all types of heat exchangers, fin plate heat exchanger appeared to be the optimum choice for manufacturing in Iran industry. A new design program was written in MATLAB based on our suggested algorithm. Since there were some practical charts about heat transfer and pressure drop in design of the heat exchanger, all the existing experimental curves related to heat transfer and pressure of fins (required in the design of the heat exchanger) were converted to data (using “Image Processing” technique in MATLAB) and implemented in the design program.


2015 ◽  
Vol 752-753 ◽  
pp. 820-827 ◽  
Author(s):  
Vaclav Dvorak

Research of devices for heat recovery is currently focused on increasing the temperature and heat efficiency of plate heat exchangers. The goal of optimization is not only to increase the heat transfer or even moisture but also reduce the pressure loss and possibly material costs. This study deals with a plate heat exchanger with wall shaped by intermittent ridges. We used software fluent and user defined deforming to deform computational mesh and create various heat exchange walls with different number of ridges and different number of set-offs. The intention of the set-offs is to discompose boundary layer inside channels created by ridges, mix the temperature field and thus intensify the heat transfer. We used previously formulated objective function, which is a linear combination of efficiency and pressure loss, and a simple local method to optimize the heat exchanger for required pressure loss. It was found that the objective function surface is monotone and unimodal, but is not smooth. The global optimums were identified and it was shown that the optimal wall shape has no set-off for low pressure losses. The optimal count of ridges and optimal count of set-offs rise with higher required pressure loss. It was proved that the suggested objective function is suitable for optimization of a counterflow plate heat exchanger, but use of a global optimization method would be beneficial.


Author(s):  
Shamkuwar S.C ◽  
◽  
Nitin Chopra ◽  
Mihir Kulkarni ◽  
Nikhil Ahire ◽  
...  

The main objective of the paper is to compare the performance of Shell and tube heat exchanger (STHE) and Plate heat exchanger (PHE) used in chillers. The paper deals with experimental investigation and comparison, which is based on actual testing of STHE and PHE. Both heat exchangers were designed and tested for a heat load of 6000 kcal/hr. In both types of heat exchangers, the primary working fluid used is Refrigerant R22 and secondary working fluid used is water. Theoretical analysis shows that PHE has a 9.67 % less heat transfer area than STHE. Experimental results show that overall heat transfer coefficient (OHTC) for PHE is higher than STHE by 30.96%. The paper also includes a comparison of the heat transfer rate (Q) of the two heat exchangers experimentally.


Author(s):  
Adnan Sözen ◽  
Ataollah Khanları ◽  
Erdem Çiftçi

Plate heat exchangers having high efficiency and small size are one of the mostly used heat exchangers. They are used in many applications ranging from cooling to heating. Heat transfer improvement of plate heat exchangers can be performed using nanoparticle-including working fluids, i.e. nanofluids. Influences of kaolin-including nanofluid utilization as working fluid on heat transfer performance of the plate heat exchanger were experimentally investigated in this study. The prepared nanofluid included 2% (wt/wt) nanoparticle content and Triton X-100 surfactant was added to the prepared mixture at the rate of 0.2% of a final concentration to increase the solubility of nanoparticles. The experiments were performed in various working conditions with changes in mass flow rate and temperature. The obtained results showed that nanofluid usage as the working fluid enhanced the heat transfer rate in plate heat exchanger in comparison to the results acquired from the tests conducted by deionized water. The improvement rate in mean heat transfer coefficient was achieved as 9.3% when kaolin–deionized water nanofluid was used as the working fluid in plate heat exchanger.


Author(s):  
Yaixa L. Rivera-Hernandex ◽  
Timothy A. Shedd

Significant advances have been made in compact liquid-liquid heat exchangers in the recent past, such as the brazed plate heat exchanger with enhanced plate geometries. However, additional improvements in heat exchanger performance may be realized by incorporating impinging jet flow rather than flow parallel to the heat exchange surface. It has been recognized for some time that highly efficient heat transfer over large areas can be attained using impinging jets with nearby drains, but no design model is available for this configuration. This paper presents a relatively simple theory for the heat transfer performance of jet-drain arrays based on the concept of transient heat transfer to the liquid. This theory is verified by comparison to experimental data. Next, the design and implementation of a liquid-liquid heat exchanger based on jet-drain arrays is presented and the performance of this novel device is directly compared with that of a brazed-plate heat exchanger. In addition, computational fluid dynamics simulations are used to design an enhanced impingement plate that virtually eliminates interactions between neighboring jets, further improving performance. Using the theory developed in this paper, very high performance compact liquid-liquid heat exchangers can be designed with relatively large orifices (approx. 1 mm), allowing for low pressure loss and the ability to pass a significant amount of solids through without clogging.


Sign in / Sign up

Export Citation Format

Share Document