scholarly journals Density Functional Theory (DFT) Study of Molecularly Imprinted Polymer (MIP) Methacrylic Acid (MAA) with D-Glucose

Author(s):  
T D K Wungu ◽  
S E Marsha ◽  
Widayani ◽  
Suprijadi
The Analyst ◽  
2018 ◽  
Vol 143 (1) ◽  
pp. 141-149 ◽  
Author(s):  
Camilla Fonseca Silva ◽  
Keyller Bastos Borges ◽  
Clebio Soares do Nascimento

In this work, we studied theoretically the formation process of a molecularly imprinted polymer (MIP) for dinotefuran (DNF), by testing distinct functional monomers (FM) in various solvents through density functional theory calculations.


Nano Express ◽  
2020 ◽  
Vol 1 (1) ◽  
pp. 010027
Author(s):  
Cantekin Kaykılarlı ◽  
Deniz Uzunsoy ◽  
Ebru Devrim Şam Parmak ◽  
Mehmet Ferdi Fellah ◽  
Özgen Çolak Çakır

Author(s):  
Hanlin Gan ◽  
Liang Peng ◽  
Feng Long Gu

The mechanism of the Cu(i)-catalyzed domino reaction furnishing 1-aryl-1,2,3-triazole assisted by CuI and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) is explored with density functional theory (DFT) calculations.


2019 ◽  
Vol 21 (6) ◽  
pp. 3227-3241 ◽  
Author(s):  
Krishnamoorthy Arumugam ◽  
Neil A. Burton

Of particular interest within the +6 uranium complexes is the linear uranyl(vi) cation and it forms numerous coordination complexes in solution and exhibits incongruent redox behavior depending on coordinating ligands. This DFT study predicts VI/V reduction potentials of a range of uranyl(vi) complexes in non-aqueous solutions within ∼0.10−0.20 eV of experiment.


Author(s):  
Mallikarjunachari Uppuladinne ◽  
Dikshita Dowerah ◽  
Uddhavesh Sonavane ◽  
Suvendra Kumar Ray ◽  
Ramesh Deka ◽  
...  

RSC Advances ◽  
2016 ◽  
Vol 6 (83) ◽  
pp. 79485-79496 ◽  
Author(s):  
F. Y. Adeowo ◽  
B. Honarparvar ◽  
A. A. Skelton

This work investigates NOTA–alkali metal (Li+, Na+ and K+ and Rb+) complexation using density functional theory.


2020 ◽  
Vol 22 (6) ◽  
pp. 3304-3313
Author(s):  
Muhammad Isa Khan ◽  
Abdul Majid ◽  
Naveed Ashraf ◽  
Irslan Ullah

In order to search for a new anode material for lithium-ion batteries (LIBs), a borophene/boron nitride (B/BN) interface was investigated in detail using density functional theory.


Sign in / Sign up

Export Citation Format

Share Document