scholarly journals The Quasi-static Properties of Natural Marine Clay under Tidal Low Frequency Cyclic Loading in Yangtze Estuary, China

Author(s):  
Dan Li ◽  
Nianqing Zhou ◽  
Xiaonan Wu ◽  
Jiachun Yin
2007 ◽  
Vol 25 (1) ◽  
pp. 15-35 ◽  
Author(s):  
S. Narasimha Rao ◽  
N. Darga Kumar

2019 ◽  
Vol 36 (4) ◽  
pp. 513-525 ◽  
Author(s):  
Min Gan ◽  
Yongping Chen ◽  
Shunqi Pan ◽  
Jiangxia Li ◽  
Zijun Zhou

AbstractInfluenced by river discharge, the tidal properties of estuarine tides can be more complex than those of oceanic tides, which makes the tidal prediction less accurate when using a classical tidal harmonic analysis approach, such as the T_TIDE model. Although the nonstationary tidal harmonic analysis model NS_TIDE can improve the accuracy for the analysis of tides in a river-dominated estuary, it becomes less satisfactory when applying the NS_TIDE model to a mesotidal estuary like the Yangtze estuary. Through the error source analysis, it is found that the main errors originate from the low frequency of tidal fluctuation. The NS_TIDE model is then modified by replacing the stage model with the frequency-expanded tidal–fluvial model so that more subtidal constituents, especially the “atmospheric tides,” can be taken into account. The results show that the residuals from tidal harmonic analysis are significantly reduced by using the modified NS_TIDE model, with the yearly root-mean-square-error values being only 0.04–0.06 m for the Yangtze estuarine tides.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Qiang Zhou ◽  
Lingyu Yang ◽  
Wenyang Zhao

Masonry structures are widely used in developing countries due to their low cost and simple construction, especially in remote areas, where there are a large number of houses without seismic measures. These buildings are prone to collapse and cause a lot of casualties, even under the action of small earthquakes. For the reinforcement of this structure, a cheap, effective, and easy-to-construct reinforcement method is urgently needed. Therefore, this article studies the reinforcement method of polypropylene bands (PP-bands). We have carried out low-frequency cyclic loading tests for two PP-band reinforced masonry walls and two compared masonry walls. We mainly studied the influence of PP-band and different compressive strengths of plastering mortar on the masonry wall’s seismic capacity. The seismic indicators mainly studied in this article include ultimate bearing capacity, energy dissipation capacity, stiffness degradation, and hysteresis characteristics. The experimental results show that the PP-band can greatly enhance the seismic capacity of the masonry wall. The ultimate bearing capacity, energy dissipation capacity, and displacement ductility of the PP-band reinforced wall are increased by 38%–48%, 22%–47%, and 138%–226%.


2011 ◽  
Vol 38 (16) ◽  
pp. 1792-1805 ◽  
Author(s):  
Ling-Ling Li ◽  
Han-Bo Dan ◽  
Li-Zhong Wang

2014 ◽  
Vol 7 (5) ◽  
pp. 569-587 ◽  
Author(s):  
Jun-Bao Wang ◽  
Xin-Rong Liu ◽  
Xiao-Jun Liu ◽  
Ming Huang

1974 ◽  
Vol 14 (01) ◽  
pp. 19-24 ◽  
Author(s):  
S.S. Peng ◽  
E.R. Podnieks ◽  
P.J. Cain

Abstract Specimens of Salem limestone were loaded cyclically at a frequency of 2 cycles/sec in uniaxial cyclic compression, tension, and compression-tension. The number of cycles to failure, maximum deformation for each cycle, and load-deformation hysteresis loops were recorded. The fatigue life and fatigue limit values under cyclic compressive loading are comparable with those under cyclic tensile loading, whereas under cyclic compressive-tensile loading they are considerably lower. Introduction The study of rock behavior in cyclic loading has been relatively ignored in the past, even though certain problems in rock mechanics are closely related to cyclic loading. These problems include the effects of percussive drilling and the vibrations generated by blasting. An understanding of the mechanisms of fatigue failure in rock can be expected to help improve drilling efficiency and prevent vibration damage caused by blasting. Because of the lack of bask information on rock behavior under cyclic loading, the Federal Bureau of Mines, Twin Cities Mining Research Center began in 1968 an extensive program for studying cyclic loading effects. This program included the investigation of the behavior of rock loaded cyclically at different frequencies under varying test geometries, loading configurations, and environments. In the high-frequency range, sonic power transducers are being used to apply cyclic loading at a frequency of 10,000 Hz, and an electromagnetic shaker is being used at frequencies from 100 to 1,000 Hz. In the low-frequency range, cyclic loading of 2 to 10 Hz is applied by a closed-loop servocontrolled electrohydraulic testing machine. In each frequency range, experiments are conducted to provide the following information: fatigue limits, fatigue life, energy dissipation, temperature induced in the specimen, and the time history of load and deformation. This paper presents the first phase of be results obtained on specimens of Salem limestone loaded in the low-frequency range. The early findings on the high-frequency effects were reported separately. Recently, the effect of cyclic loading on rock behavior has been receiving more attention and considerable information is being generated. General Loading Concept in Cyclic Loading In conventional strength tests the monotonic loading program is specified by the loading rate and control mode. For cyclic loading, where the load is a periodic function of time, the problem is more complex. To evaluate such material properties as fatigue life, the load must be described systematically and concisely in terms of physically significant parameters. parameters. For a general case, one approach is to divide the cyclic stress into time-independent and time-dependent components. The time-independent component (or mean stress) is the time average of the stress. A cyclic stress with an amplitude A and zero mean can be superimposed on this loading. For the usual case of cyclic loading with steady loading conditions, the stress can be described as follows.(1)= + (t), where f(t) is a periodic function of time, t, and can be represented by a sine or sawtooth wave. Other ways of describing the stress are available such as using the maximum and minimum stresses, which are related to the mean and amplitude:(2)max = . and(3)min = . The key issue is to describe the loading in terms that will correlate with the material properties of interest. The use of amplitude and mean stress to describe cyclic loading separates the time-dependent bona the time-independent portion of the stress because the effect of each portion of the loading should be investigated separately. In analyzing the effect of cyclic loading on rock, another significant factor is the large difference between the tensile strength and the compressive strength. P. 19


Spine ◽  
2018 ◽  
Vol 43 (3) ◽  
pp. E132-E142 ◽  
Author(s):  
Meredith L. Schollum ◽  
Kelly R. Wade ◽  
Peter A. Robertson ◽  
Ashvin Thambyah ◽  
Neil D. Broom

2012 ◽  
Vol 479-481 ◽  
pp. 170-173
Author(s):  
Yu Tian Wang ◽  
Fu Xiang Jiang ◽  
Yan Wang ◽  
Xiu Li Du

A single-span and two-story frame specimen with reinforced beam ends has been tested under low-frequency cyclic loading. Based on the test results, the failure patterns, hysteretic behaviors, energy dissipation and deformation ability were analyzed. The results showed that the failure mode of the test specimen was ductility. Plastic hinges appeared at the changing point of the beam cross section far away from the beam-column joint. Hysteretic curve of the frame was full and the whole ductility coefficient was enough higher than 4.4 under horizontal low-cyclic loading. It can be concluded that the energy dissipation and the deformation ability are both better. So the whole steel frame connected with reinforced beam ends has good seismic performance. And the requirements of anti-seismic ability can be satisfied.


1993 ◽  
Vol 119 (11) ◽  
pp. 1771-1789 ◽  
Author(s):  
Adrian F. L. Hyde ◽  
Kazuya Yasuhara ◽  
Kazutoshi Hirao

Sign in / Sign up

Export Citation Format

Share Document