Experimental Study on the Seismic Performance of Steel Frame with Reinforced Beam Ends

2012 ◽  
Vol 479-481 ◽  
pp. 170-173
Author(s):  
Yu Tian Wang ◽  
Fu Xiang Jiang ◽  
Yan Wang ◽  
Xiu Li Du

A single-span and two-story frame specimen with reinforced beam ends has been tested under low-frequency cyclic loading. Based on the test results, the failure patterns, hysteretic behaviors, energy dissipation and deformation ability were analyzed. The results showed that the failure mode of the test specimen was ductility. Plastic hinges appeared at the changing point of the beam cross section far away from the beam-column joint. Hysteretic curve of the frame was full and the whole ductility coefficient was enough higher than 4.4 under horizontal low-cyclic loading. It can be concluded that the energy dissipation and the deformation ability are both better. So the whole steel frame connected with reinforced beam ends has good seismic performance. And the requirements of anti-seismic ability can be satisfied.

2012 ◽  
Vol 626 ◽  
pp. 85-89 ◽  
Author(s):  
Kay Dora Abdul Ghani ◽  
Nor Hayati Hamid

The experimental work on two full-scale precast concrete beam-column corner joints with corbels was carried out and their seismic performance was examined. The first specimen was constructed without steel fiber, while second specimen was constructed by mixed up steel fiber with concrete and placed it at the corbels area. The specimen were tested under reversible lateral cyclic loading up to ±1.5% drift. The experimental results showed that for the first specimen, the cracks start to occur at +0.5% drifts with spalling of concrete and major cracks were observed at corbel while for the second specimen, the initial cracks were observed at +0.75% with no damage at corbel. In this study, it can be concluded that precast beam-column joint without steel fiber has better ductility and stiffness than precast beam-column joint with steel fiber. However, precast beam-column joint with steel fiber has better energy dissipation and fewer cracks at corbel as compared to precast beam-column joint without steel fiber.


2013 ◽  
Vol 479-480 ◽  
pp. 1170-1174
Author(s):  
Hee Cheul Kim ◽  
Dae Jin Kim ◽  
Min Sook Kim ◽  
Young Hak Lee

The purpose of this study was to evaluate seismic performance of rehabilitated beam-column joint using FRP sheets and Buckling Restrained Braces (BRBs) and provide test data related to rehabilitated beam-column joints in reinforced concrete structures. The seismic performance of total six beam-column specimens is evaluated under cyclic loadings in terms of shear strength, effective stiffness, energy dissipation and ductility. The test results showed wrapping FRP sheets can contribute to increase the effect of confinement and the crack delay. Also retrofitting buckling restrained braces (BRBs) can improve the stiffness and energy dissipation capacity. Both FRP sheets and BRBs can effectively improve the strength, stiffness and ductility of seismically deficient beam-column joints.


2013 ◽  
Vol 353-356 ◽  
pp. 2069-2072
Author(s):  
Hua Ma ◽  
Xue Wei Zhang ◽  
Zhen Bao Li ◽  
Wen Jing Wang ◽  
Fang Liang Zhang ◽  
...  

An experiment of three T-shape beam-column steel joints with intensive cover plate was conducted under low cyclic loading with different cycle numbers, to study seismic performance of the joints subjected to long-period ground motions. Effects of cycle number on mechanical performance and length of plastic hinge were analyzed. The results show that as the cycle number increases, capacity of the joint decreases, and plastic hinge of the joint develops longer which appears closer to the cover plate, and the platform of skeleton curve grows longer, and the stiffness attenuates slightly.


2010 ◽  
Vol 163-167 ◽  
pp. 1879-1882 ◽  
Author(s):  
Zhang Gen Guo ◽  
Wei Min Sun ◽  
Jian Wang ◽  
Jian Long Chen ◽  
Yi Fan Xu

In order to investigate the seismic performance of recycled concrete perforated brick masonry, an experiment was conducted on three specimens of recycled concrete perforated brick walls subjected to low frequency reversed cyclic load test. The loading process, failure mechanism, ultimate bearing capacity was studied. The seismic behavior such as hysteretic characteristics, backbone curve, ductility, energy dissipation capacity were analyzed too. The test results show that the seismic performance of recycled concrete perforated brick masonry is similar to those of ordinary concrete perforated brick walls. The test results also indicate that the seismic behavior of recycled concrete perforated brick masonry is good. The specimens have good hysteresis loops and ductility, strong energy dissipation capacities.


Author(s):  
Xiangyong Ni ◽  
Shuangyin Cao ◽  
Hassan Aoude

This study examines the influence of cross-section shape on the seismic behaviour of high-strength steel reinforced concrete shear walls (HSS-RC) designed with Grade HRB 600 MPa reinforcement. As part of the study, two flexure-dominant walls with rectangular and T-shaped cross-sections, are tested under reversed cyclic loading. Seismic performance is evaluated by studying the failure characteristics, hysteretic curves, energy dissipation, ductility and reinforcing bar strains in the two walls. As part of the numerical study, two-dimensional (2D) and three-dimensional (3D) finite element modelling (FEM) are used to predict the seismic response of the rectangular and T-shaped walls, respectively. The test results show that compared to the rectangular wall, the flange in the T-shaped HSS-RC wall increased strength, energy dissipation and stiffness, but decreased ductility. The analytical hysteretic curves calculated using 2D and 3D FEM analyses show good agreement with the experimental test results.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Qingguang He ◽  
Yanxia Bai ◽  
Weike Wu ◽  
Yongfeng Du

A novel assembled self-centering variable friction (SCVF) brace is proposed which is composed of an energy dissipation system, a self-centering system, and a set of force transmission devices. The hysteretic characteristics and energy dissipation of the SCVF brace with various parameters from low-cyclic loading tests are presented. A finite element model was constructed and tested under simulated examination for comparative analysis. The results indicate that the brace shows an atypical flag-type hysteresis curve. The SCVF brace showed its stable self-centering ability and dissipation energy capacity within the permitted axial deformation under different spring and friction plates. A larger deflection of the friction plate will make the variable friction of this SCVF brace more obvious. A higher friction coefficient will make the energy dissipation capacity of the SCVF brace stronger, but the actual friction coefficient will be lower than the design value after repeated cycles. The results of the fatigue tests showed that the energy dissipation system formed by the ceramic fiber friction blocks and the friction steel plates in the SCVF brace has a certain stability. The finite element simulation results are essentially consistent with the obtained test results, which is conducive to the use of finite element software for calculation and structural analysis in actual engineering design.


2020 ◽  
Vol 23 (13) ◽  
pp. 2822-2834
Author(s):  
Xian Rong ◽  
Hongwei Yang ◽  
Jianxin Zhang

This article investigated the seismic performance of a new type of precast concrete beam-to-column joint with a steel connector for easy construction. Five interior beam-to-column joints, four precast concrete specimens, and one monolithic joint were tested under reversed cyclic loading. The main variables were the embedded H-beam length, web plate or stiffening rib usage, and concrete usage in the connection part. The load–displacement hysteresis curves were recorded during the test, and the behavior was investigated based on displacement ductility, deformability, skeleton curves, stiffness degradation, and energy dissipation capacity. The results showed that the proposed beam-to-column joint with the web plate in the steel connector exhibited satisfactory behavior in terms of ductility, load capacity, and energy dissipation capacity under reversed cyclic loading, and the performance was ductile because of the yielding of the web plate. Therefore, the proposed joint with the web plate could be used in high seismic regions. The proposed joint without the web plate exhibited similar behavior to the monolithic specimen, indicating that this joint could be used in low or moderate seismic zones. Furthermore, the utilization of the web plate was vital to the performance of this system.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Qiang Zhou ◽  
Lingyu Yang ◽  
Wenyang Zhao

Masonry structures are widely used in developing countries due to their low cost and simple construction, especially in remote areas, where there are a large number of houses without seismic measures. These buildings are prone to collapse and cause a lot of casualties, even under the action of small earthquakes. For the reinforcement of this structure, a cheap, effective, and easy-to-construct reinforcement method is urgently needed. Therefore, this article studies the reinforcement method of polypropylene bands (PP-bands). We have carried out low-frequency cyclic loading tests for two PP-band reinforced masonry walls and two compared masonry walls. We mainly studied the influence of PP-band and different compressive strengths of plastering mortar on the masonry wall’s seismic capacity. The seismic indicators mainly studied in this article include ultimate bearing capacity, energy dissipation capacity, stiffness degradation, and hysteresis characteristics. The experimental results show that the PP-band can greatly enhance the seismic capacity of the masonry wall. The ultimate bearing capacity, energy dissipation capacity, and displacement ductility of the PP-band reinforced wall are increased by 38%–48%, 22%–47%, and 138%–226%.


2016 ◽  
Vol 16 (01) ◽  
pp. 1640015 ◽  
Author(s):  
Yun Tian Wu ◽  
Yu Shan Fu ◽  
Chong-Ming Dai

A new type of partially steel tubed concrete (PSTC) column is proposed that is suitable to be used in new high rise reinforced concrete (RC) buildings. Three exterior joint specimens consisting of RC beams and PSTC columns and two exterior RC joint specimens were designed and tested under high axial load and cyclic loading to investigate the joint behavior in terms of failure pattern, hysteresis response, deformation, energy dissipation capacity and degradation of strength and stiffness. Test results indicate that the PSTC column can benefit the performance of the joint in terms of strength, ductility and energy dissipation capacity and can partly compensate for the unfavorable effect induced by slab. The strong column–weak beam mechanism can also be ensured in RC beam to PSTC column joint.


2011 ◽  
Vol 255-260 ◽  
pp. 2308-2312
Author(s):  
Yong Qi ◽  
Ci Mian Zhu ◽  
Shu Sheng Zhong ◽  
Fang Wang ◽  
Yang Xiang

This paper deals with an experimental study on the seismic performance of haunched transfer beam structures with varied ratio of section height to thickness of short-leg shearwall (RHT). Based on the seismic tests of three 1:3-scaled specimens under low-frequency cyclic lateral load with constant vertical actions, the failure pattern, the hysteresis curves, the skeleton curves, the energy dissipation capacity, and the stiffness degradation laws of haunched transfer beam structures are investigated. The effects of different RHT (i.e., 5, 6 and 7) on the seismic performance of haunched transfer beam structures are emphasized and analyzed in detail. It is concluded that the rigidity of the structure is noticeable enhanced, the endogen force becomes more evenly distributed and the bearing is more rational with an increase of the RHT; the rationally designed haunched transfer beam structure has a good seismic behavior.


Sign in / Sign up

Export Citation Format

Share Document