scholarly journals Tensile behaviors of three-dimensionally free-formable titanium mesh plates for bone graft applications

Author(s):  
Jianmei He
Keyword(s):  
2015 ◽  
Vol 16 (2) ◽  
pp. 154-162 ◽  
Author(s):  
Danilo Alessio Di Stefano ◽  
Gian Battista Greco ◽  
Lorenzo Cinci ◽  
Laura Pieri

ABSTRACT Aim The present work describes a horizontal ridge augmentation in which a titanium mesh was preshaped by adapting it to a stereolithographic model of the patient's jaw that was fabricated from CT scans. Background Guided bone regeneration (GBR) involves covering the augmentation site with a long-lasting barrier to protect it from the invasion of surrounding soft tissues. Among barriers, titanium meshes may provide a successful outcome, but the intraoperatory time needed to shape them is a disadvantage. Case description The 54-year-old patient, missing the right mandibular second bicuspid, first molar, and second molar, had her atrophic ridge augmented with a 30:70 mixture of autogenous bone and equine, enzyme-deantigenic collagenpreserved bone substitute. Two conical implants were inserted concomitantly in the second bicuspid and first molar positions, and the site was protected with the preshaped mesh. Four months later, the titanium mesh was retrieved, a bone sample was collected, and histological and histomorphometric analyses were performed. Provisional and definitive prostheses were then delivered, and follow-up controls were performed for up to 24 months. Conclusion Preshaping the mesh on a model of the patient's mandible shortened the surgical time and enabled faster mesh placement. Two years after surgery, the implants were perfectly functional, and the bone width was stable over time as shown by radiographic controls. Histological analysis of the bone sample showed the heterologous biomaterial to be biocompatible and undergoing advanced remodeling and replacement with newly formed bone. Clinical significance Preshaping a titanium mesh over a stereolithographic model of the patient's jaw allowed for a significant reduction of the intraoperative time and may be therefore, advisable in routine practice. How to cite this article Di Stefano DA, Greco GB, Cinci L, Pieri L. Horizontal-guided Bone Regeneration using a Titanium Mesh and an Equine Bone Graft. J Contemp Dent Pract 2015;16(2):154-162.


2010 ◽  
Vol 23 (01) ◽  
pp. 66-70 ◽  
Author(s):  
J. Shani ◽  
U. Segal

SummaryIn this case report, we describe the use of a cylindrical titanium mesh cage combined with cancellous bone graft to surgically manage large segmental bone defects in a dog. A seven-year-old, neutered male cross-breed dog, with highly comminuted fractures of the right femur and the left radius and ulna, was referred for treatment. Previous open reduction and internal fixation of these fractures had failed. Following implant removal and debridement of each bone, a 71 mm segmental femoral defect and a 27 mm segmental radial defect were present. A commercially available cylindrical titanium mesh cage was filled with ß-tricalcium phosphate crystals mixed with an equal volume of autogenous cancellous bone graft. The mesh cage was aligned with the proximal and distal parts of each bone using an intramedullary pin passing through the cage, and a locking plate was applied to the proximal and distal fracture fragments to produce compression against the titanium cage. The dog had a successful long-term clinical outcome, and radiographic examination at 22 and 63 weeks after surgery showed the formation of remodelling bridging callus that was continuous across the titanium cage in each of the fractures. Due to the relative simplicity of the technique and the favourable outcome in this case, it should be considered an option when managing comminuted fractures with large bone defects.


2015 ◽  
Vol 26 (2) ◽  
pp. 193-197 ◽  
Author(s):  
Cássio Edvard Sverzut ◽  
Alexandre Elias Trivellato ◽  
Alexander Tadeu Sverzut

Patients wearing complete dentures for a long time usually exhibit lack of bone and keratinized mucosa in the bearing area due to bone resorption. The patients suffering from this phenomenon usually have unstable and non-retentive complete denture, which result in constant trauma to the mucosa, pain, functional limitations and worsening of facial esthetics. An innovative technique has been described in which a novel surgical approach using osseointegrated dental implants as "tent poles" was applied concomitant with particulate autogenous bone graft. The authors claim that the control and maintenance of the surgically expanded soft tissue volume should prevent graft resorption in the long term. Nevertheless, resorption of the bone graft is usually more significant where the bone mass is poorer, in the mandibular body. This paper describes a case of severely resorbed edentulous mandible in which the "tent pole" technique was applied with some modifications. Use of the titanium mesh "shelters" and two additional implants was effective in "protecting" the bone graft in the posterior portion of the mandibular body increasing bone mass volume in this area. Furthermore, we believe that this kind of graft "protection" on the whole residual alveolar ridge can increase the width of bone mass gain optimizing the "tent pole" technique.


1993 ◽  
Vol 91 (Supplement) ◽  
pp. 776-777
Author(s):  
Patrick K. Sullivan ◽  
David A. Rosenstein ◽  
Ralph E. Holmes ◽  
David Craig ◽  
Paul N. Manson

1988 ◽  
Vol 34 (2) ◽  
pp. 337-343
Author(s):  
Yuji SHIRATSUCHI ◽  
Norifumi NAKAMURA ◽  
Tetsuaki WATANABE ◽  
Hideo TASHIRO

Sign in / Sign up

Export Citation Format

Share Document