scholarly journals Thermal Analysis of a Three-Phase Induction Motor with Frame Design Considerations

Author(s):  
Afrah Thamer Abdullah ◽  
Amer Majbel Ali
Author(s):  
Afrah Thamer Abdullah ◽  
Amer Mejbel Ali

This paper adopted a thermal network method (TNM) based on  Motor-CAD software, and Matlab/SIMULINK, with finite element method (FEM) based on Flux2D software to perform a thermal analysis of a totally enclosed fan-cooled (TEFC), squirrel cage, three-phase induction motor. The thermal analysis is achieved based on a precise knowledge of the test motor geometry, materials, and heat sources (losses). The estimation of heat distribution inside the test motor by this three software is done successfully with a good agreement between its results. The proposed triple-software methodology for this work can be adopted from the motor designer instead of using an experimental test based on a real motor.


2013 ◽  
Vol 49 (4) ◽  
pp. 1523-1530 ◽  
Author(s):  
Mircea Popescu ◽  
David George Dorrell ◽  
Luigi Alberti ◽  
Nicola Bianchi ◽  
David Alan Staton ◽  
...  

Machines ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 2
Author(s):  
Amel Adouni ◽  
Antonio J. Marques Cardoso

Three-phase induction motors are considered to be the workhorse of industry. Therefore, induction motor faults are not only the cause of users’ frustrations but they also drive up the costs related to unexpected breakdowns, repair actions, and safety issues. One of the most critical faults in three-phase induction motors is related to the occurrence of inter-turn short circuits, due to its devastating consequences. The topic of inter-turn short-circuit faults in three-phase induction motors has been discussed over recent decades by several researchers. These studies have mainly dealt with early fault detection to avoid dramatic consequences. However, they fall short of addressing the potential burnout of the induction motor before the detection step. Furthermore, the cumulative action played by an inevitable degree of unbalanced supply voltages may exacerbate such consequences. For that reason, in deep detail, this paper delves into the thermal analysis of the induction motor when operating under these two harsh conditions: unbalanced supply voltages and the presence of the most incipient type of inter-turn short-circuit condition—a short-circuit between two turns only. In this work, the finite element method has been applied to create the faulty scenarios, and a commercial software (Flux2D) has been used in order to simulate the electromagnetic and thermal behavior of the machine for various degrees of severity of the aforementioned faulty modes. The obtained results confirm that the diagnostic tools reported in the literature might not be effective, failing to warrant the required lead time so that suitable actions can be taken to prevent permanent damage to the machine.


Sign in / Sign up

Export Citation Format

Share Document