scholarly journals Fabrication of Micro-Hole Array on Glass Material by Abrasive Jet Machining

Author(s):  
Choung-Lii Chao ◽  
Wan-Hsuan Wang ◽  
Tian-Ming Chao ◽  
Wen-Chen Chou ◽  
Kung-Jeng Ma
Materials ◽  
2018 ◽  
Vol 11 (1) ◽  
pp. 160 ◽  
Author(s):  
Woong-Kirl Choi ◽  
Seong-Hyun Kim ◽  
Seung-Geon Choi ◽  
Eun-Sang Lee
Keyword(s):  

Author(s):  
Guanxin Chi ◽  
Weiliang Zeng ◽  
Desheng Dong ◽  
Zhenlong Wang

Micro electrical discharge machining (EDM), enhanced with ultrasonic vibration, is explored and assessed as a new technology for developing microelectrode array, for microelectrode array fabricated by LIGA has shortcomings such as complex technology and high price. Based on the mechanism of micro-EDM, micro-hole array discharges to fabricate microelectrode array by reverse copying. In the process of reverse copying, the thicker rod electrode can’t rotate, resulting in electric arc and short-circuit easily, so it is necessary to add ultrasonic vibration on the plane plate electrode. According to the technology, a set of micro-EDM system is designed and developed. On the machining system, influence of ultrasonic vibration is analysed from the way of vibration mechanics through theoretical analysis and experimental observation. Compared with machining without ultrasonic vibration, single discharging energy decreases 1/2, discharge frequency improves three times, machining efficiency increases two times and better surface quality is achieved. Finally, 5×5 arrays of microelectrode and microhole made by these microelectrode arrays are got, the diameter of single electrode is less than 30μm and height-to-width aspect ratio is more than 8, moreover these arrays of microelectrode and micro-hole have very good surface quality.


2013 ◽  
Vol 45 ◽  
pp. 125-128
Author(s):  
S. Ooi ◽  
T. Mochiku ◽  
M. Tachiki ◽  
K. Hirata

2009 ◽  
Vol 69-70 ◽  
pp. 79-82 ◽  
Author(s):  
Yu Kui Wang ◽  
Zhen Long Wang ◽  
Mao Sheng Li ◽  
Wei Liang Zeng ◽  
M.H. Weng

In the paper, in order to overcome machining limits in throughput and precision because of positioning error and tool wear of a single tool electrode, a method for the microelectrode array fabrication by micro-WEDM is described and assessed. Characteristics of the microelectrode array fabrication by micro-WEDM, such as machining open voltage, pulse peak current, discharge duration and servo feed rate so on, are investigated through a series of experiments. A 10 10 squared electrode array is machined by micro-WEDM and the width of each squared electrode is about 40µm. The microelectrode array with good quality is obtained by applying decreased open voltage and peak current, increased discharge duration and optimized machining speed. Then micro hole-array is processed by applying obtained electrode array in micro-EDM method. The diameter of each squared hole in the array is about 50 µm due to appropriate control strategy that per micro pulse energy is decreased and periodic jump-down is applied during the machining process. Experiments have demonstrated that the combination process of microelectrode array fabricated by micro-WEDM and micro-hole array done by micro-EDM is a novel method of process which makes it more feasible and efficient to fabricate microelectrode array and high-density hole-array.


2015 ◽  
Vol 642 ◽  
pp. 207-211 ◽  
Author(s):  
Feng Che Tsai ◽  
Shie Chen Yang ◽  
Tsuo Fei Mao ◽  
Hsi Chuan Huang ◽  
Tsung Lun Li

This study aims to develop a polishing process improvement technology for deep micro-hole knockout hole wall with high aspect ratio, and discuss the optimal polishing parameter combination of abrasive jet machining method and micro-elastic abrasive particles for deep micro-hole knockout hole wall surface. A micro-elastic abrasive process technology was thus developed. The experimental results showed that the micro-elastic abrasive has better grinding effect on the surface roughness of knockout hole wall in length of 300 mm and in inside diameter of ψ2mm in the machining conditions of jet pressure 0.5MPa, volume mixing ratio 2:1 of abrasive particles to additive and vacuum attraction 70 cmHg. It was improved from 2.39 μm Ra (10.74 μm Rmax) to 0.08 μmRa (1.12 μm Rmax), proving the feasibility of micro-elastic abrasive. The surface was improved well, and the process time was shortened greatly.


Sign in / Sign up

Export Citation Format

Share Document