scholarly journals Stress-strain state simulation of large-sized cable-stayed shell structures

Author(s):  
S Ponomarev ◽  
A Zhukov ◽  
A Belkov ◽  
V Ponomarev ◽  
S Belov ◽  
...  
2020 ◽  
pp. paper13-1-paper13-12
Author(s):  
Alexey Semenov ◽  
Iurii Zgoda

The paper describes a mathematical model of changes in the geometry of thin-shell structures for visualization of the analysis data on their stress-strain state (SSS). Based on this mathematical model, a visualization module for shell SSS visualization using VR and AR technologies was developed. The interactive visualization environment Unity 2019.3 and C# programming language were used. The interactive visualization module makes a 3D image of a shell structure and visualizes the SSS either through heat maps over the shell or through the changes in the shell geometry on the basis of the shell type, its geometric characteristics, and SSS analysis data (transferred to the visualization module by means of a JSON file). While working on the visualization module, the authors developed a system of components that makes it possible to visualize any 3D surface with coordinate axes (including numbers with a pitch determined automatically), visualize heat maps with a graduated scale, visualize a mesh over the graph to improve the perception of the surface deformations. The middle surface can also be deformed on the basis of SSS analysis data. This solution increases the efficiency of the work of specialists in civil engineering and architecture and can be used when training specialists in courses on thin-shell structures and procedural geometry.


Author(s):  
Vladimyr Meish ◽  
◽  
Yuliia Meish ◽  

Thin-walled shell structures in the form of plates and shells of various shapes have a high bearing capacity, lightness, and relative ease of manufacture. Three-layer shell elements, which consist of two bearing layers and a filler, which ensures their joint work, are widely used in mechanical engineering, industrial and civil construction, aviation and space technology, shipbuilding. When calculating the strength of three-layer shell structures with a discrete filler under dynamic loads, it becomes necessary to determine the stress-strain state both in the area of a sharp change in the geometry of the structure and at a considerable distance from the heterogeneity. The complexity of the processes that arise in this case necessitates the use of modern numerical methods for solving dynamic problems of the behavior of three-layer shell elements with a discrete filler. In this regard, the determination of the stress-strain state of three-layer shells with a discrete filler under non-stationary loads and the development of an effective numerical method for solving problems of this class is an urgent problem in the mechanics of a deformable solid. On the basis of the theory of threelayered shells with applying the hypotheses for each layer the nonstationary vibrations threelayered shells of revolution with allowance of discrete fillers are investigated. Hamilton-Ostrogradskyy variational principle for dynamical processes is used for deduction of the motion equations. An efficient numerical method for solution of problems on nonstationary behaviour of threelayers shells of revolution with allowance of discrete fillers are used. The wide diapason of geometrical, and physico-mechanical parameters of nonhomohenes threelayered structure are considerated. On the basis of the offered model nonstationary problems of the forced nonlinear vibrations of threelayered shells of revolution of various structure are solved and analysed. The basis of the developed numerical method for the study of nonstationary oscillations is the application of explicit finite-difference schemes to solve the initial differential equations in partial derivatives. The theory is based on the relations of the theory of three-layer shells of revolution taking into account the discreteness of the filler, which are based on the hypotheses of the geometrically nonlinear theory of shells and rods of the Timoshenko type.


2021 ◽  
Vol 274 ◽  
pp. 03018
Author(s):  
Lilya Kharasova ◽  
Samat Timergaliev

The paper studies the stress-strain state of flat elastic isotropic thin-walled shell structures in the framework of the S. P. Timoshenko shear model with pivotally supported edges. The stress-strain state of shell structures is described by a system of five second-order nonlinear partial differential equations under given static boundary conditions with respect to generalized displacements. The system of equations under study is linear in terms of tangential displacements, rotation angles, and nonlinear in terms of normal displacement. To find a solution to the system that satisfies the given static boundary conditions, integral representations for generalized displacements containing arbitrary holomorphic functions are used. Finding holomorphic functions is one of the main and difficult points in the proposed study. The integral representations constructed in this way allow us to reduce the original problem to a single nonlinear operator equation with respect to the deflection, the solvability of which is established using the principle of compressed maps.


1981 ◽  
Vol 17 (6) ◽  
pp. 541-545
Author(s):  
�. U. Dadamukhamedov ◽  
M. Sh. Dyshel' ◽  
V. A. Firsov ◽  
O. N. Chekin ◽  
I. S. Chernyshenko

1979 ◽  
Vol 15 (7) ◽  
pp. 573-577
Author(s):  
S. P. Gavelya ◽  
Yu. A. Sysoev

Author(s):  
А. Г. Гребеников ◽  
И. В. Малков ◽  
В. А. Урбанович ◽  
Н. И. Москаленко ◽  
Д. С. Колодийчик

The analysis of the design and technological features of the tail boom (ТB) of a helicopter made of polymer composite materials (PCM) is carried out.Three structural and technological concepts are distinguished - semi-monocoque (reinforced metal structure), monocoque (three-layer structure) and mesh-type structure. The high weight and economic efficiency of mesh structures is shown, which allows them to be used in aerospace engineering. The physicomechanical characteristics of the network structures are estimated and their uniqueness is shown. The use of mesh structures can reduce the weight of the product by a factor of two or more.The stress-strain state (SSS) of the proposed tail boom design is determined. The analysis of methods for calculating the characteristics of the total SSS of conical mesh shells is carried out. The design of the tail boom is presented, the design diagram of the tail boom of the transport category rotorcraft is developed. A finite element model was created using the Siemens NX 7.5 system. The calculation of the stress-strain state (SSS) of the HC of the helicopter was carried out on the basis of the developed structural scheme using the Advanced Simulation module of the Siemens NX 7.5 system. The main zones of probable fatigue failure of tail booms are determined. Finite Element Analysis (FEA) provides a theoretical basis for design decisions.Shown is the effect of the type of technological process selected for the production of the tail boom on the strength of the HB structure. The stability of the characteristics of the PCM tail boom largely depends on the extent to which its design is suitable for the use of mechanized and automated production processes.A method for the manufacture of a helicopter tail boom from PCM by the automated winding method is proposed. A variant of computer modeling of the tail boom of a mesh structure made of PCM is shown.The automated winding technology can be recommended for implementation in the design of the composite tail boom of the Mi-2 and Mi-8 helicopters.


Sign in / Sign up

Export Citation Format

Share Document