scholarly journals Stress-strain state interactive visualization of the parametrically-defined thin-shell structures with the use of AR and VR technologies

2020 ◽  
Vol 12 (4) ◽  
Author(s):  
A.A. Semenov ◽  
Iu.N. Zgoda
2020 ◽  
pp. paper13-1-paper13-12
Author(s):  
Alexey Semenov ◽  
Iurii Zgoda

The paper describes a mathematical model of changes in the geometry of thin-shell structures for visualization of the analysis data on their stress-strain state (SSS). Based on this mathematical model, a visualization module for shell SSS visualization using VR and AR technologies was developed. The interactive visualization environment Unity 2019.3 and C# programming language were used. The interactive visualization module makes a 3D image of a shell structure and visualizes the SSS either through heat maps over the shell or through the changes in the shell geometry on the basis of the shell type, its geometric characteristics, and SSS analysis data (transferred to the visualization module by means of a JSON file). While working on the visualization module, the authors developed a system of components that makes it possible to visualize any 3D surface with coordinate axes (including numbers with a pitch determined automatically), visualize heat maps with a graduated scale, visualize a mesh over the graph to improve the perception of the surface deformations. The middle surface can also be deformed on the basis of SSS analysis data. This solution increases the efficiency of the work of specialists in civil engineering and architecture and can be used when training specialists in courses on thin-shell structures and procedural geometry.


Author(s):  
David Cajamarca-Zuniga ◽  
Sebastian Luna

Relevance. This work is the first in a series of publications on the selection of a suitable analytical surface for implementation as a self-supporting structure for a thin shell footbridge. The study on the influence of concrete strength, live load position and support types on the stress-strain state of a hyperbolic paraboloid (hypar) shell is presented. Objective - to define the initial design parameters such as the appropriate concrete strength and the support type that generates the best structural behaviour to perform the subsequent structural design of a thin shell footbridge. Methods. The static finite element analysis was performed for 4 compressive strengths of concrete (28, 40, 80, 120 MPa) which correspond normal, high and ultra-high resistance concrete, 5 different live load arrangements and 3 different support conditions. Results. The shell model with pinned (two-hinged) supports shows the same vertical displacements as the model with fixed supports (hingeless). For the studied shell thickness, in terms of stress behaviour, the model with pinned ends is more efficient. The combination of two-hinged supports with 80 MPa concrete strength shows a better structural performance.


Author(s):  
S Ponomarev ◽  
A Zhukov ◽  
A Belkov ◽  
V Ponomarev ◽  
S Belov ◽  
...  

Author(s):  
Vladimyr Meish ◽  
◽  
Yuliia Meish ◽  

Thin-walled shell structures in the form of plates and shells of various shapes have a high bearing capacity, lightness, and relative ease of manufacture. Three-layer shell elements, which consist of two bearing layers and a filler, which ensures their joint work, are widely used in mechanical engineering, industrial and civil construction, aviation and space technology, shipbuilding. When calculating the strength of three-layer shell structures with a discrete filler under dynamic loads, it becomes necessary to determine the stress-strain state both in the area of a sharp change in the geometry of the structure and at a considerable distance from the heterogeneity. The complexity of the processes that arise in this case necessitates the use of modern numerical methods for solving dynamic problems of the behavior of three-layer shell elements with a discrete filler. In this regard, the determination of the stress-strain state of three-layer shells with a discrete filler under non-stationary loads and the development of an effective numerical method for solving problems of this class is an urgent problem in the mechanics of a deformable solid. On the basis of the theory of threelayered shells with applying the hypotheses for each layer the nonstationary vibrations threelayered shells of revolution with allowance of discrete fillers are investigated. Hamilton-Ostrogradskyy variational principle for dynamical processes is used for deduction of the motion equations. An efficient numerical method for solution of problems on nonstationary behaviour of threelayers shells of revolution with allowance of discrete fillers are used. The wide diapason of geometrical, and physico-mechanical parameters of nonhomohenes threelayered structure are considerated. On the basis of the offered model nonstationary problems of the forced nonlinear vibrations of threelayered shells of revolution of various structure are solved and analysed. The basis of the developed numerical method for the study of nonstationary oscillations is the application of explicit finite-difference schemes to solve the initial differential equations in partial derivatives. The theory is based on the relations of the theory of three-layer shells of revolution taking into account the discreteness of the filler, which are based on the hypotheses of the geometrically nonlinear theory of shells and rods of the Timoshenko type.


2021 ◽  
Vol 274 ◽  
pp. 03018
Author(s):  
Lilya Kharasova ◽  
Samat Timergaliev

The paper studies the stress-strain state of flat elastic isotropic thin-walled shell structures in the framework of the S. P. Timoshenko shear model with pivotally supported edges. The stress-strain state of shell structures is described by a system of five second-order nonlinear partial differential equations under given static boundary conditions with respect to generalized displacements. The system of equations under study is linear in terms of tangential displacements, rotation angles, and nonlinear in terms of normal displacement. To find a solution to the system that satisfies the given static boundary conditions, integral representations for generalized displacements containing arbitrary holomorphic functions are used. Finding holomorphic functions is one of the main and difficult points in the proposed study. The integral representations constructed in this way allow us to reduce the original problem to a single nonlinear operator equation with respect to the deflection, the solvability of which is established using the principle of compressed maps.


1981 ◽  
Vol 17 (6) ◽  
pp. 541-545
Author(s):  
�. U. Dadamukhamedov ◽  
M. Sh. Dyshel' ◽  
V. A. Firsov ◽  
O. N. Chekin ◽  
I. S. Chernyshenko

1994 ◽  
Vol 26 (8) ◽  
pp. 598-603
Author(s):  
V. V. Kuznetsov

1979 ◽  
Vol 15 (7) ◽  
pp. 573-577
Author(s):  
S. P. Gavelya ◽  
Yu. A. Sysoev

Sign in / Sign up

Export Citation Format

Share Document