scholarly journals Research on path planning of locally added path factor dijkstra algorithm for multiple AGV systems

Author(s):  
Guorong Wu ◽  
Xuan Sun
Author(s):  
Hongying Shan ◽  
Chuang Wang ◽  
Cungang Zou ◽  
Mengyao Qin

This paper is a study of the dynamic path planning problem of the pull-type multiple Automated Guided Vehicle (multi-AGV) complex system. First, based on research status at home and abroad, the conflict types, common planning algorithms, and task scheduling methods of different AGV complex systems are compared and analyzed. After comparing the different algorithms, the Dijkstra algorithm was selected as the path planning algorithm. Secondly, a mathematical model is set up for the shortest path of the total driving path, and a general algorithm for multi-AGV collision-free path planning based on a time window is proposed. After a thorough study of the shortcomings of traditional single-car planning and conflict resolution algorithms, a time window improvement algorithm for the planning path and the solution of the path conflict covariance is established. Experiments on VC++ software showed that the improved algorithm reduces the time of path planning and improves the punctual delivery rate of tasks. Finally, the algorithm is applied to material distribution in the OSIS workshop of a C enterprise company. It can be determined that the method is feasible in the actual production and has a certain application value by the improvement of the data before and after the comparison.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Liu He ◽  
Haoning Xi ◽  
Tangyi Guo ◽  
Kun Tang

Path planning for the multiagent, which is generally based on the artificial potential energy field, reflects the decision-making process of pedestrian walking and has great importance on the field multiagent system. In this paper, after setting the spatial-temporal simulation environment with large cells and small time segments based on the disaggregation decision theory of the multiagent, we establish a generalized dynamic potential energy model (DPEM) for the multiagent through four steps: (1) construct the space energy field with the improved Dijkstra algorithm, and obtain the fitting functions to reflect the relationship between speed decline rate and space occupancy of the agent through empirical cross experiments. (2) Construct the delay potential energy field based on the judgement and psychological changes of the multiagent in the situations where the other pedestrians have occupied the bottleneck cell. (3) Construct the waiting potential energy field based on the characteristics of the multiagent, such as dissipation and enhancement. (4) Obtain the generalized dynamic potential energy field by superposing the space potential energy field, delay potential energy field, and waiting potential energy field all together. Moreover, a case study is conducted to verify the feasibility and effectiveness of the dynamic potential energy model. The results also indicate that each agent’s path planning decision such as forward, waiting, and detour in the multiagent system is related to their individual characters and environmental factors. Overall, this study could help improve the efficiency of pedestrian traffic, optimize the walking space, and improve the performance of pedestrians in the multiagent system.


2019 ◽  
Vol 69 (4) ◽  
pp. 369-377
Author(s):  
Yan Shi ◽  
Lihua Zhang ◽  
Shouquan Dong

The path planning of anti-ship missile should be considered both cruising in safety and striking in quick, which is an intractable problem. In particular, it is difficult to consider the safety of each missile path in the path planning of multiple missiles. To solve this problem, the “AREA Algorithm” is presented to divide the relative relations of areas:relative security area of the threat areas and fast-attack area of target approaching. Specifically,it is a way to achieve area division through the relationship between the target and the center of the operational area. The Voronoi diagram topology network, Dijkstra algorithm and binary tree algorithm have been used in the above process as well. Finally, Simulations have verified the feasibility and obvious advantages of “AREA Algorithm” compared with the single algorithm, and the tactical meaning in path planning of multiple missiles.


2021 ◽  
Vol 3 (2) ◽  
pp. 21-28
Author(s):  
Kiat Teh Choon ◽  
Kit Wong Wai ◽  
Soe Min Thu

Vision based patrol robot has been with great interest nowadays due to its consistency, cost effectiveness and no temperament issue. In recent times, Global positioning system (GPS) has been cooperated with Global Navigation Satellite System (GNSS) to come out with better accuracy quality in positioning, navigation, and timing (PNT) services to locate a device. However, such localization service is yet to reach any indoor facility. For an indoor surveillance vision based patrol robot, such limitation hinders its path planning capabilities that allows the patrol robot to seek for the optimum path to reach the appointed destination and return back to its home position. In this paper, a vision based indoor surveillance patrol robot using sensory manipulation technique is presented and an extended Dijkstra algorithm is proposed for the patrol robot path planning. The design of the patrol robot adopted visual type sensor, range sensors and Inertia Measurement Unit (IMU) system to impulsively update the map’s data in line with the patrol robot’s current path and utilize the path planning features to carry out obstacle avoidance and re-routing process in accordance to the obstacle’s type met by the patrol robot. The result conveyed by such approach certainly managed to complete multiple cycles of testing with positive result.


Electronics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1351
Author(s):  
Zhiheng Yuan ◽  
Zhengmao Yang ◽  
Lingling Lv ◽  
Yanjun Shi

Avoiding the multi-automated guided vehicle (AGV) path conflicts is of importance for the efficiency of the AGV system, and we propose a bi-level path planning algorithm to optimize the routing of multi-AGVs. In the first level, we propose an improved A* algorithm to plan the AGV global path in the global topology map, which aims to make the path shortest and reduce the AGV path conflicts as much as possible. In the second level, we present the dynamic rapidly-exploring random trees (RRT) algorithm with kinematic constraints to obtain the passable local path with collisions in the local grid map. Compared to the Dijkstra algorithm and classic A* algorithm, the simulation results showed that the proposed bi-level path planning algorithm performed well in terms of the search efficiency, significantly reducing the incidence of multiple AGV path conflicts.


Sign in / Sign up

Export Citation Format

Share Document