scholarly journals The simulation of crack growth in rolling stock running wheel disk

Author(s):  
V V Chunin ◽  
D A Knyazev ◽  
M V Timakov
Author(s):  
Nancy J. Tighe

Silicon nitride is one of the ceramic materials being considered for the components in gas turbine engines which will be exposed to temperatures of 1000 to 1400°C. Test specimens from hot-pressed billets exhibit flexural strengths of approximately 50 MN/m2 at 1000°C. However, the strength degrades rapidly to less than 20 MN/m2 at 1400°C. The strength degradition is attributed to subcritical crack growth phenomena evidenced by a stress rate dependence of the flexural strength and the stress intensity factor. This phenomena is termed slow crack growth and is associated with the onset of plastic deformation at the crack tip. Lange attributed the subcritical crack growth tb a glassy silicate grain boundary phase which decreased in viscosity with increased temperature and permitted a form of grain boundary sliding to occur.


2001 ◽  
Vol 11 (PR5) ◽  
pp. Pr5-69-Pr5-75
Author(s):  
V. S. Deshpande ◽  
H. H.M. Cleveringa ◽  
E. Van der Giessen ◽  
A. Needleman

1997 ◽  
Vol 473 ◽  
Author(s):  
Michael Lane ◽  
Robert Ware ◽  
Steven Voss ◽  
Qing Ma ◽  
Harry Fujimoto ◽  
...  

ABSTRACTProgressive (or time dependent) debonding of interfaces poses serious problems in interconnect structures involving multilayer thin films stacks. The existence of such subcriticai debonding associated with environmentally assisted crack-growth processes is examined for a TiN/SiO2 interface commonly encountered in interconnect structures. The rate of debond extension is found to be sensitive to the mechanical driving force as well as the interface morphology, chemistry, and yielding of adjacent ductile layers. In order to investigate the effect of interconnect structure, particularly the effect of an adjacent ductile Al-Cu layer, on subcriticai debonding along the TiN/SiO2 interface, a set of samples was prepared with Al-Cu layer thicknesses varying from 0.2–4.0 μm. All other processing conditions remained the same over the entire sample run. Results showed that for a given crack growth velocity, the debond driving force scaled with Al-Cu layer thickness. Normalizing the data by the critical adhesion energy allowed a universal subcriticai debond rate curve to be derived.


2010 ◽  
Vol 38 (3) ◽  
pp. 194-212 ◽  
Author(s):  
Bastian Näser ◽  
Michael Kaliske ◽  
Will V. Mars

Abstract Fatigue crack growth can occur in elastomeric structures whenever cyclic loading is applied. In order to design robust products, sensitivity to fatigue crack growth must be investigated and minimized. The task has two basic components: (1) to define the material behavior through measurements showing how the crack growth rate depends on conditions that drive the crack, and (2) to compute the conditions experienced by the crack. Important features relevant to the analysis of structures include time-dependent aspects of rubber’s stress-strain behavior (as recently demonstrated via the dwell period effect observed by Harbour et al.), and strain induced crystallization. For the numerical representation, classical fracture mechanical concepts are reviewed and the novel material force approach is introduced. With the material force approach at hand, even dissipative effects of elastomeric materials can be investigated. These complex properties of fatigue crack behavior are illustrated in the context of tire durability simulations as an important field of application.


Sign in / Sign up

Export Citation Format

Share Document