Duration of crack growth in 20G1FL steel in regular and irregular loading with special reference to rolling stock of freight cars

1989 ◽  
Vol 25 (2) ◽  
pp. 225-227
Author(s):  
T. P. Severinova ◽  
A. G. Kozlov
2021 ◽  
Vol 87 (4) ◽  
pp. 43-51
Author(s):  
A. N. Savkin ◽  
K. A. Badikov ◽  
A. A. Sedov

The kinetics of fatigue crack growth has been studied in tensile testing of compact steel tensile specimens (S(T)-type) in the middle section of the kinetic diagram of fatigue fracture (fatigue crack growth diagram) under regular and irregular loading with different asymmetry and maximum load values. The samples were tested on a BISS Nano-25kN servo-hydraulic machine. Standard loading spectra typical for different technical objects exposed to alternating loading during operation were used. The values of the crack growth rate per cycle in the loading block were obtained. Parameters for assessing the character of irregular loading and crack closure, namely, the irregularity factor and crack closure coefficient were proposed. When calculating the effective value of the range of the stress intensity factor (SIF) at the crack mouth, we propose also to take into account the loading irregularity in addition to the closure coefficient. With this approach, the obtained fatigue crack growth diagrams can be grouped into one equivalent curve, which is characteristic of regular loading with R = 0. Moreover, grouping of the fatigue crack growth diagrams provided the use of unified parameters when calculating the crack growth kinetics, regardless of the type and parameters of loading, which rather simplified the crack growth determination. The fatigue crack growth life was predicted taking into account the crack «closure» and the nature of loading according both to the approach developed by the authors and by cyclic calculation method (cycle-by-cycle). All the data obtained are tabulated and classed according to the type of loading. The calculation results and experimental data showed good convergence, which was confirmed by the high values of the correlation coefficient.


Author(s):  
A. N. Savkin ◽  
A. A. Sedov ◽  
K. A. Badikov ◽  
A. N. Baryshnikov

In this work, we studied the kinetics of fatigue crack growth on compact steel tensile specimens (C (T)-type), in the middle section of crack growth diagram under regular and irregular loading with different asymmetries and maximum load. The crack growth kinetics was obtained by the authors experimentally on modern servo-hydraulic testing machine. Irregular loading was carried out using samples of standard loading spectra characteristic of various technical objects experiencing variable loading during operation. The values of the crack growth rate were obtained. Parameters that evaluate the character of irregular loading and crack closure, namely, irregularity factor and crack closure ratio were suggested. When calculating the effective value of the magnitude of the stress intensity factor (SIF) at the crack mouth, it is proposed to consider in addition to the closure coefficient and cracks also measure irregular loading. The fatigue crack growth life was predicted taking into account its “closure” and the nature of loading according to the approach proposed by the authors and the cyclic calculation method (cycle-by-cycle), all the data obtained are tabulated and distributed according to the type of loading. The results obtained showed good convergence of the calculated and experimental data, which confirms the high values of the correlation.


Author(s):  
Alexis T. Kermanidis ◽  
Spiros G. Pantelakis

The LTSM-F crack growth model is implemented in the present work for the assessment of crack growth and remaining fatigue life of 2024 aluminium alloy with different microstructure. The effect of microstructure in the crack growth analysis is simulated by means of respective yield strength and fracture toughness values of the material. The analytical results obtained are compared against experimental results performed on a series of fatigue crack growth specimens of the alloy under constant amplitude and irregular loading including overload and real stress histories. The analytical results demonstrate the potential of the model to account for crack growth behaviour under irregular loading conditions of dissimilar microstructures.


Sign in / Sign up

Export Citation Format

Share Document