wheel activity
Recently Published Documents


TOTAL DOCUMENTS

132
(FIVE YEARS 18)

H-INDEX

28
(FIVE YEARS 1)

2021 ◽  
Vol 3 (3) ◽  
pp. 482-494
Author(s):  
Janelle Chong ◽  
James Frederick Cheeseman ◽  
Matthew D. M. Pawley ◽  
Andrea Kwakowsky ◽  
Guy R. Warman

General anaesthesia (GA) is known to affect the circadian clock. However, the mechanisms that underlie GA-induced shifting of the clock are less well understood. Activation of γ-aminobutyric acid (GABA)-type A receptors (GABAAR) in the suprachiasmatic nucleus (SCN) can phase shift the clock and thus GABA and its receptors represent a putative pathway via which GA exerts its effect on the clock. Here, we investigated the concurrent effects of the inhalational anaesthetic, isoflurane, and light, on mouse behavioural locomotor rhythms and on α1, β3, and γ2 GABAAR subunit expression in the SCN of the mouse brain. Behavioural phase shifts elicited by exposure of mice to four hours of GA (2% isoflurane) and light (400 lux) (n = 60) were determined by recording running wheel activity rhythms in constant conditions (DD). Full phase response curves for the effects of GA + light on behavioural rhythms show that phase shifts persist in anaesthetized mice exposed to light. Daily variation was detected in all three GABAAR subunits in LD 12:12. The γ2 subunit expression was significantly increased following GA in DD (compared to light alone) at times of large behavioural phase delays. We conclude that the phase shifting effect of light on the mouse clock is not blocked by GA administration, and that γ2 may potentially be involved in the phase shifting effect of GA on the clock. Further analysis of GABAAR subunit expression in the SCN will be necessary to confirm its role.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Sharon R Ladyman ◽  
Kirsten M Carter ◽  
Matt L Gillett ◽  
Zin Khant Aung ◽  
David R Grattan

As part of the maternal adaptations to pregnancy, mice show a rapid, profound reduction in voluntary running wheel activity (RWA) as soon as pregnancy is achieved. Here, we evaluate the hypothesis that prolactin, one of the first hormones to change secretion pattern following mating, is involved in driving this suppression of physical activity levels during pregnancy. We show that prolactin can acutely suppress RWA in non-pregnant female mice, and that conditional deletion of prolactin receptors (Prlr) from either most forebrain neurons or from GABA neurons prevented the early pregnancy-induced suppression of RWA. Deletion of Prlr specifically from the medial preoptic area, a brain region associated with multiple homeostatic and behavioural roles including parental behaviour, completely abolished the early pregnancy-induced suppression of RWA. As pregnancy progresses, prolactin action continues to contribute to the further suppression of RWA, although it is not the only factor involved. Our data demonstrate a key role for prolactin in suppressing voluntary physical activity during early pregnancy, highlighting a novel biological basis for reduced physical activity in pregnancy.


2021 ◽  
Vol 8 ◽  
Author(s):  
Rolf Schreckenberg ◽  
Annemarie Wolf ◽  
Christian Troidl ◽  
Sakine Simsekyilmaz ◽  
Klaus-Dieter Schlüter

The effect of high physical activity, performed as voluntary running wheel exercise, on inflammation and vascular adaptation may differ between normotensive and spontaneously hypertensive rats (SHRs). We investigated the effects of running wheel activity on leukocyte mobilization, neutrophil migration into the vascular wall (aorta), and transcriptional adaptation of the vascular wall and compared and combined the effects of high physical activity with that of pharmacological treatment (aldosterone antagonist spironolactone). At the start of the 6th week of life, before hypertension became established in SHRs, rats were provided with a running wheel over a period of 10-months'. To investigate to what extent training-induced changes may underlie a possible regression, controls were also generated by removal of the running wheel for the last 4 months. Aldosterone blockade was achieved upon oral administration of Spironolactone in the corresponding treatment groups for the last 4 months. The number of circulating blood cells was quantified by FACS analysis of peripheral blood. mRNA expression of selected proteins was quantified by RT-PCR. Histology and confocal laser microscopy were used to monitor cell migration. Although voluntary running wheel exercise reduced the number of circulating neutrophils in normotensive rats, it rather increased it in SHRs. Furthermore, running wheel activity in SHRs but not normotensive rats increased the number of natural killer (NK)-cells. Except of the increased expression of plasminogen activator inhibitor (PAI)-1 and reduction of von Willebrand factor (vWF), running wheel activity exerted a different transcriptional response in the vascular tissue of normotensive and hypertensive rats, i.e., lack of reduction of the pro-inflammatory IL-6 in vessels from hypertensive rats. Spironolactone reduced the number of neutrophils; however, in co-presence with high physical activity this effect was blunted. In conclusion, although high physical activity has beneficial effects in normotensive rats, this does not predict similar beneficial effects in the concomitant presence of hypertension and care has to be taken on interactions between pharmacological approaches and high physical activity in hypertensives.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Anne-Sophie Wattiez ◽  
Olivia J. Gaul ◽  
Adisa Kuburas ◽  
Erik Zorilla ◽  
Jayme S. Waite ◽  
...  

Abstract Background Circadian patterns of migraine attacks have been reported by patients but remain understudied. In animal models, circadian phases are generally not taken into consideration. In particular, rodents are nocturnal animals, yet they are most often tested during their inactive phase during the day. This study aims to test the validity of CGRP-induced behavioral changes in mice by comparing responses during the active and inactive phases. Methods Male and female mice of the outbred CD1 strain were administered vehicle (PBS) or CGRP (0.1 mg/kg, i.p.) to induce migraine-like symptoms. Animals were tested for activity (homecage movement and voluntary wheel running), light aversive behavior, and spontaneous pain at different times of the day and night. Results Peripheral administration of CGRP decreased the activity of mice during the first hour after administration, induced light aversive behavior, and spontaneous pain during that same period of time. Both phenotypes were observed no matter what time of the day or night they were assessed. Conclusions A decrease in wheel activity is an additional clinically relevant phenotype observed in this model, which is reminiscent of the reduction in normal physical activity observed in migraine patients. The ability of peripheral CGRP to induce migraine-like symptoms in mice is independent of the phase of the circadian cycle. Therefore, preclinical assessment of migraine-like phenotypes can likely be done during the more convenient inactive phase of mice.


2021 ◽  
pp. 1-17
Author(s):  
Carsten T. Beuckmann ◽  
Hiroyuki Suzuki ◽  
Erik S. Musiek ◽  
Takashi Ueno ◽  
Toshitaka Sato ◽  
...  

Background: Many patients with Alzheimer’s disease (AD) display circadian rhythm and sleep-wake disturbances. However, few mouse AD models exhibit these disturbances. Lemborexant, a dual orexin receptor antagonist, is under development for treating circadian rhythm disorders in dementia. Objective: Evaluation of senescence-accelerated mouse prone-8 (SAMP8) mice as a model for sleep-wake and rhythm disturbances in AD and the effect of lemborexant by assessing sleep-wake/diurnal rhythm behavior. Methods: SAMP8 and control senescence-accelerated mouse resistant-1 (SAMR1) mice received vehicle or lemborexant at light onset; plasma lemborexant and diurnal cerebrospinal fluid (CSF) orexin concentrations were assessed. Sleep-wake behavior and running wheel activity were evaluated. Results: Plasma lemborexant concentrations were similar between strains. The peak/nadir timing of CSF orexin concentrations were approximately opposite between strains. During lights-on, SAMP8 mice showed less non-rapid eye movement (non-REM) and REM sleep than SAMR1 mice. Lemborexant treatment normalized wakefulness/non-REM sleep in SAMP8 mice. During lights-off, lemborexant-treated SAMR1 mice showed increased non-REM sleep; lemborexant-treated SAMP8 mice displayed increased wakefulness. SAMP8 mice showed differences in electroencephalogram architecture versus SAMR1 mice. SAMP8 mice exhibited more running wheel activity during lights-on. Lemborexant treatment reduced activity during lights-on and increased activity in the latter half of lights-off, demonstrating a corrective effect on overall diurnal rhythm. Lemborexant delayed the acrophase of activity in both strains by approximately 1 hour. Conclusion: SAMP8 mice display several aspects of sleep-wake and rhythm disturbances in AD, notably mistimed activity. These findings provide some preclinical rationale for evaluating lemborexant in patients with AD who experience sleep-wake and rhythm disturbances.


2021 ◽  
Vol 12 ◽  
Author(s):  
Annemarie Wolf ◽  
Hanna Sarah Kutsche ◽  
Felix Atmanspacher ◽  
Meryem Sevval Karadedeli ◽  
Rolf Schreckenberg ◽  
...  

Obesity and hypertension are common risk factors for cardiovascular disease whereas an active lifestyle is considered as protective. However, the interaction between high physical activity and hypertension is less clear. Therefore, this study investigates the impact of high physical activity on the muscular and hepatic expression of glucose transporters (Glut), uncoupling proteins (UCPs), and proprotein convertase subtilisin/kexin type 9 (PCSK9) in spontaneously hypertensive rats (SHRs). Twenty-four female rats (12 normotensive rats and 12 SHRs) were divided into a sedentary control and an exercising group that had free access to running wheels at night for 10 months. Blood samples were taken and blood pressure was determined. The amount of visceral fat was semi-quantitatively analyzed and Musculus gastrocnemius, Musculus soleus, and the liver were excised. Acute effects of free running wheel activity were analyzed in 15 female SHRs that were sacrificed after 2 days of free running wheel activity. M. gastrocnemius and M. soleus differed in their mRNA expression of UCP-2, UCP-3, GLUT-4, and PCSK9. Hypertension was associated with lower levels of UCP-2 and PCSK9 mRNA in the M. gastrocnemius, but increased expression of GLUT-1 and GLUT-4 in the M. soleus. Exercise down-regulated UCP-3 in the M. soleus in both strains, in the M. gastrocnemius only in normotensives. In SHRs exercise downregulated the expression of UCP-2 in the M. soleus. Exercise increased the expression of GLUT-1 in the M. gastrocnemius in both strains, and that of GLUT-4 protein in the M. soleus, whereas it increased the muscle-specific expression of PCSK9 only in normotensive rats. Effects of exercise on the hepatic expression of cholesterol transporters were seen only in SHRs. As an acute response to exercise increased expressions of the myokine IL-6 and that of GLUT-1 were found in the muscles. This study, based on transcriptional adaptations in striated muscles and livers, shows that rats perform long-term metabolic adaptations when kept with increased physical activity. These adaptations are at least in part required to stabilize normal protein expression as protein turnover seems to be modified by exercise. However, normotensive and hypertensive rats differed in their responsiveness. Based on these results, a direct translation from normotensive to hypertensive rats is not possible. As genetic differences between normotensive humans and patients with essential hypertension are likely to be present as well, we would expect similar differences in humans that may impact recommendations for non-pharmacological interventions.


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0244702
Author(s):  
Ethan O. Contreras ◽  
Carley G. Dearing ◽  
Crystal A. Ashinhurst ◽  
Betty A. Fish ◽  
Sajila N. Hossain ◽  
...  

Background Pre-clinical testing of retinal pathology and treatment efficacy depends on reliable and valid measures of retinal function. The electroretinogram (ERG) and tests of visual acuity are the ideal standard, but can be unmeasurable while useful vision remains. Non-image-forming responses to light such as the pupillary light reflex (PLR) are attractive surrogates. However, it is not clear how accurately such responses reflect changes in visual capability in specific disease models. The purpose of this study was to test whether measures of non-visual responses to light correlate with previously determined visual function in two photoreceptor degenerations. Methods The sensitivity of masking behavior (light induced changes in running wheel activity) and the PLR were measured in 3-month-old wild-type mice (WT) with intact inner retinal circuitry, Pde6b-rd1/rd1 mice (rd1) with early and rapid loss of rods and cones, and Prph2-Rd2/Rd2 mice (Rd2) with a slower progressive loss of rods and cones. Results In rd1 mice, negative masking had increased sensitivity, positive masking was absent, and the sensitivity of the PLR was severely reduced. In Rd2 mice, positive masking identified useful vision at higher light levels, but there was a limited decrease in the irradiance sensitivity of negative masking and the PLR, and the amplitude of change for both underestimated the reduction in irradiance sensitivity of image-forming vision. Conclusions Together these data show that in a given disease, two responses to light can be affected in opposite ways, and that for a given response to light, the change in the response does not accurately represent the degree of pathology. However, the extent of the deficit in the PLR means that even a limited rescue of rod/cone function might be measured by increased PLR amplitude. In addition, positive masking has the potential to measure effective treatment in both models by restoring responses or shifting thresholds to lower irradiances.


2020 ◽  
Author(s):  
Michael A Taffe ◽  
Jacques D Nguyen ◽  
Sophia A Vandewater ◽  
Yanabel Grant ◽  
Tobin J Dickerson

The α-pyrrolidino-phenone cathinone stimulants first came to widespread attention because of bizarre behavior consequent to the use of α-pyrrolidinopentiophenone (α-PVP, "flakka") reported in the popular press. As with other designer drugs, diversification of cathiones has been driven by desireable subjective effects, but also by attempts to stay ahead of legal controls of specific molecules. The α-pyrrolidinohexiophenone (α-PHP) and α-pyrrolidinopropiophenone (α-PPP) compounds have been relatively under-investigated relative to α-PVP and provide a key opportunity to also investigate structure-activity relationships, i.e., how the extension of the alpha carbon chain may affect potency or efficacy. Male and female rats were used to contrast the effects of α-PHP and α-PPP with those of α-PVP in altering wheel activity and effects on spontaneous locomotion and body temperature were assessed in female rats. The α-PHP and α-PVP compounds (5, 10 mg/kg, i.p.) suppressed wheel activity in female and male rats, whereas α-PPP was only effective in female rats. Inhalation of α-PHP or α-PVP by female rats suppressed wheel activity for an abbreviated duration, compared with the injection route. Spontaneous activity was increased in a dose-dependent manner by all three compounds in female rats, and a small decrements in body temperature were observed after the highest dose of all three compounds. These data show that all three of the α-pyrrolidino-phenone cathinones exhibit significant stimulant-like activity in both male and female rats. Differences were minor and were mostly in potency and the duration of activity. Abuse liability is therefore likely to be equivalent for all three pyrrolidino-phenones.


2020 ◽  
Vol 11 ◽  
Author(s):  
Do-Hyun Kim ◽  
Joong Sun Kim ◽  
Jeongsang Kim ◽  
Jong-Kil Jeong ◽  
Hong-Seok Son ◽  
...  

Licorice and dried ginger decoction (Gancao-ganjiang-tang, LGD) is used for nausea and anorexia, accompanied by excessive sweating in Traditional Chinese Medicine. Herein, we investigated the therapeutic effects of LGD using the activity-based anorexia (ABA) in a mouse model. Six-week-old female BALB/c AnNCrl mice were orally administered LGD, water, licorice decoction, dried ginger decoction, or chronic olanzapine, and their survival, body weight, food intake, and wheel activity were compared in ABA. Additionally, dopamine concentration in brain tissues was evaluated. LGD significantly reduced the number of ABA mice reaching the drop-out criterion of fatal body weight loss. However, LGD showed no significant effects on food intake and wheel activity. We found that in the LGD group the rise of the light phase activity rate inhibited body weight loss. Licorice or dried ginger alone did not improve survival rates, they only showed longer survival periods than chronic olanzapine when combined. In addition, LGD increased the dopamine concentration in the brain. The results from the present study showed that LGD improves the survival of ABA mice and its mechanism of action might be related to the alteration of dopamine concentration in the brain.


2020 ◽  
Author(s):  
S.R. Ladyman ◽  
K.M. Carter ◽  
Z. Khant Aung ◽  
D. R. Grattan

AbstractAs part of the maternal adaptations to pregnancy, mice show a rapid, profound reduction in voluntary running wheel activity (RWA) as soon as pregnancy is achieved. Here, we evaluate the hypothesis that prolactin, one of the first hormones to change secretion pattern following mating, is involved in driving this suppression of physical activity levels during pregnancy. We show that prolactin can acutely suppress RWA in virgin female mice, and that conditional deletion of prolactin receptors (Prlr) from either all forebrain neurons or from GABA neurons prevented the early pregnancy-induced suppression of RWA. Deletion of Prlr specifically from the medial preoptic area, a brain region associated with multiple homeostatic and behavioural roles including parental behaviour, completely abolished the early pregnancy-induced suppression of RWA. Our data demonstrate a key role for prolactin in suppressing voluntary physical activity during early pregnancy, highlighting a novel biological basis for reduced physical activity in pregnancy.


Sign in / Sign up

Export Citation Format

Share Document