scholarly journals Investigation on Drill Wear and Micro Hole Quality in High Speed Drilling of High Frequency Printed Circuit Board

Author(s):  
Xianwen Liu ◽  
Hongyan Shi ◽  
Guang Huang ◽  
Sha Tao ◽  
Zhisen Gao
Circuit World ◽  
2015 ◽  
Vol 41 (4) ◽  
pp. 147-153 ◽  
Author(s):  
Lijuan Zheng ◽  
Chengyong Wang ◽  
Xin Zhang ◽  
Yuexian Song ◽  
Lunqiang Zhang ◽  
...  

Purpose – The purpose of this study is to present the entry drilling process of flexible printed circuit board (FPCs) and its influence on hole quality, especially hole location accuracy. Compared with the traditional PCB drilling process, the technology of drilling FPCs is facing more problems, such as hole location accuracy, smear on the hole wall surface, burned hole wall surface, etc. Moreover, the materials of FPCs are quite different from the rigid printed circuit boards (RPCs). FPCs no longer contain glass fiber cloths to reinforce resin, resulting in flexibility. Micro-hole quality is the most important issue in FPC drilling. Suggestions were given to obtain higher hole qualities and higher FPC reliability. Design/methodology/approach – The entry drilling process of FPC with different kind of entry boards was observed by a high-speed camera. The hole qualities of FPC micro-drilling, especially hole location accuracy and hole entrance quality, were measured. The relationship between entry boards and hole quality was analyzed. Findings – Significant sliding occurred when drilling FPC with using no-entry board or pure aluminum plate entry board. On the contrary, no significant sliding occurred when using LC-110 or resin-coated aluminum foil (MVC) entry boards. The type, thickness and use-pattern of entry boards influenced hole location accuracy of FPCs seriously. In addition, entry board also influenced the micro-hole entrance quality and micro-hole diameter. The entrance quality of drilling FPC with LC-110 entry board was the best. The diameter variation of drilling FPC with MVC entry board was the smallest. The hole location accuracy decreased as the thickness of entry board increased. Thus, the best use-pattern of entry board was putting a LC-110 under MVC entry board, resulting in best entrance quality and hole location accuracy. Originality/value – The technology and manufacturing of FPCs in China are obviously behind. Research of FPCs micro-drilling and research data are lacking so far. Thus, it is most necessary to improve the technology level of FPCs micro-drilling in China. Researches on hole quality, especially hole location accuracy of FPCs drilling, were performed in this paper. Suggestions were given to obtain higher hole quality of FPCs.


2011 ◽  
Vol 188 ◽  
pp. 104-109 ◽  
Author(s):  
Hong Qun Tang ◽  
Cheng Yong Wang ◽  
Bing Wang ◽  
F. Su ◽  
Ping Ma ◽  
...  

The target of this paper is to design a high speed drilling machine suitable for printed circuit board with micro-hole of 0.1 mm diameter, which has drilling force measuring function and rapid change spindle function. Therefore, in this paper, the main principles of module partition for drilling machine were analyzed. Module partition was conducted for high speed drilling machine of Printed Circuit Board (PCB), as well as using modular components combine PCB high speed drilling machine. Then, performance testing and simulation of dynamic modeling were carried out on the modular PCB high speed drilling machine. The results show that the modular PCB high speed drilling machine has good performance, enough stiffness, better stability and meeting the design requirements. The modular partition laid the foundation for further study on the module creation and reconfiguration of PCB drilling machine.


2012 ◽  
Vol 2012 (1) ◽  
pp. 000628-000637
Author(s):  
Jerry Aguirre ◽  
Marcos Vargas ◽  
Paul Garland

A full-wave electromagnetic analysis for characterizing typical electromagnetic shielding practices in ceramic electronic packages is presented. Typically in printed circuit board emissions, the power plane emissions, and exposed surface nets are considered, however, the signal interconnect from the PCB to an electronic package can also be a significant source of radiation and hence an electromagnetic interference (EMI) issue. In this paper we describe electromagnetic radiation mechanisms resulting from high-frequency and high-speed applications in ceramic multilayer electronic packages and review the typical practice of implementing via fences to mitigate and reduce the EMI risk within a package substrate and also for the case when the package is part of a package/board configuration.


Sign in / Sign up

Export Citation Format

Share Document