Degradable calcium deficient hydroxyapatite/PLGA bilayer scaffold through integral molding 3D printing for bone defect repair

2020 ◽  
Author(s):  
Ning Wu ◽  
Jia Liu ◽  
Weibo Ma ◽  
Xian Dong ◽  
Feng Wang ◽  
...  
2021 ◽  
Vol 8 (2) ◽  
Author(s):  
Yi Chen ◽  
Jiaping Huang ◽  
Jiamei Liu ◽  
Yingming Wei ◽  
Xianyan Yang ◽  
...  

Abstract It is still a challenge to optimize the component distribution and microporous structures in scaffolds for tailoring biodegradation (ion releasing) and enhancing bone defect repair within an expected time stage. Herein, the core–shell-typed nonstoichiometric wollastonite (4% and 10% Mg-doping calcium silicate; CSiMg4, CSiMg10) macroporous scaffolds with microporous shells (adding ∼10 μm PS microspheres into shell-layer slurry) were fabricated via 3D printing. The initial mechanical properties and bio-dissolution (ion releasing) in vitro, and osteogenic capacity in vivo of the bioceramic scaffolds were evaluated systematically. It was shown that endowing high-density micropores in the sparingly dissolvable CSiMg10 or dissolvable CSiMg4 shell layer inevitably led to nearly 30% reduction of compressive strength, but such micropores could readily tune the ion release behaviour of the scaffolds (CSiMg4@CSiMg10 vs. CSiMg4@CSiMg10-p; CSiMg10@CSiMg4 vs. CSiMg10@CSiMg4-p). Based on the in rabbit femoral bone defect repair model, the 3D μCT reconstruction and histological observation demonstrated that the CSiMg4@CSiMg10-p scaffolds displayed markedly higher osteogenic capability than the other scaffolds after 12 weeks of implantation. It demonstrated that core–shell bioceramic 3D printing technique can be developed to fabricate single-phase or biphasic bioactive ceramic scaffolds with accurately tailored filament biodegradation for promoting bone defect regeneration and repair in some specific pathological conditions.


2020 ◽  
Vol 148 ◽  
pp. 153-162 ◽  
Author(s):  
Yi Liu ◽  
Rui Wang ◽  
Shayang Chen ◽  
Zhujie Xu ◽  
Qiqi Wang ◽  
...  

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Jungang Li ◽  
Chaoqian Zhao ◽  
Chun Liu ◽  
Zhenyu Wang ◽  
Zeming Ling ◽  
...  

Abstract Background The bone regeneration of artificial bone grafts is still in need of a breakthrough to improve the processes of bone defect repair. Artificial bone grafts should be modified to enable angiogenesis and thus improve osteogenesis. We have previously revealed that crystalline Ca10Li(PO4)7 (CLP) possesses higher compressive strength and better biocompatibility than that of pure beta-tricalcium phosphate (β-TCP). In this work, we explored the possibility of cobalt (Co), known for mimicking hypoxia, doped into CLP to promote osteogenesis and angiogenesis. Methods We designed and manufactured porous scaffolds by doping CLP with various concentrations of Co (0, 0.1, 0.25, 0.5, and 1 mol%) and using 3D printing techniques. The crystal phase, surface morphology, compressive strength, in vitro degradation, and mineralization properties of Co-doped and -undoped CLP scaffolds were investigated. Next, we investigated the biocompatibility and effects of Co-doped and -undoped samples on osteogenic and angiogenic properties in vitro and on bone regeneration in rat cranium defects. Results With increasing Co-doping level, the compressive strength of Co-doped CLP scaffolds decreased in comparison with that of undoped CLP scaffolds, especially when the Co-doping concentration increased to 1 mol%. Co-doped CLP scaffolds possessed excellent degradation properties compared with those of undoped CLP scaffolds. The (0.1, 0.25, 0.5 mol%) Co-doped CLP scaffolds had mineralization properties similar to those of undoped CLP scaffolds, whereas the 1 mol% Co-doped CLP scaffolds shown no mineralization changes. Furthermore, compared with undoped scaffolds, Co-doped CLP scaffolds possessed excellent biocompatibility and prominent osteogenic and angiogenic properties in vitro, notably when the doping concentration was 0.25 mol%. After 8 weeks of implantation, 0.25 mol% Co-doped scaffolds had markedly enhanced bone regeneration at the defect site compared with that of the undoped scaffold. Conclusion In summary, CLP doped with 0.25 mol% Co2+ ions is a prospective method to enhance osteogenic and angiogenic properties, thus promoting bone regeneration in bone defect repair.


2011 ◽  
Vol 77 (4) ◽  
pp. 439-446 ◽  
Author(s):  
Adalberto Novaes Silva ◽  
José Américo de Oliveira ◽  
Maria Célia Jamur ◽  
José Ari Gualberto Junqueira ◽  
Vani Maria Correa ◽  
...  

Author(s):  
Xinyun Zhai ◽  
Changshun Ruan ◽  
Jie Shen ◽  
Chuping Zheng ◽  
Xiaoli Zhao ◽  
...  

Using nanoclay as the physical crosslinker, a novel clay-based nanocomposite hydrogel with attractive mechanical properties has be obtained, and the gradual release of intrinsic Mg2+ and Si4+ endows the system with excellent osteogenesis.


2014 ◽  
Vol 9 (1) ◽  
pp. 41-51 ◽  
Author(s):  
Josephine Fang ◽  
Zhi Yang ◽  
ShihJye Tan ◽  
Charisse Tayag ◽  
Marcel E Nimni ◽  
...  

2021 ◽  
Vol 17 (7) ◽  
pp. 1330-1338
Author(s):  
Shibai Zhu ◽  
Xiaotian Zhang ◽  
Xi Chen ◽  
Yiou Wang ◽  
Shanni Li ◽  
...  

The best way in which to prepare scaffolds with good biological properties is an urgent problem in the field of tissue engineering. In this paper we discuss the preparation of nano-hydroxyapatite scaffold of recombinant human bone morphogenetic protein-2 (rhBMP-2) and its application in bone defect repair. rhBMP-2 reagent was dissolved in 1 mol/L sodium dihydrogen phosphate solution, and the rhBMP-2 solution was added to the nano-hydroxyapatite artificial bone with a 100 μL glass micro dropper at the rate of 10 drops/min to obtain Nano-HA/rhBMP-2 composite artificial bone. In in vivo experiments, rabbits were fixed on an operating table, a 2 cm longitudinal incision was made in the middle part of the radial forearm, and the radius was cut with a wire saw and periosteum, 2.5 cm away from the distal radius. After washing the wound with normal saline, Adv-hBMP-2/MC3T3-E1 nano-HA composite artificial bone, MC3T3-E1 nan-HA composite artificial bone, or Nano-HA artificial bone were implanted in different groups. The artificial bone scaffold prepared in this study has a stronger ability to repair bone defects than the alternatives, and is a promising prospect for the clinical treatment of bone defects.


Author(s):  
Xiaotao Xing ◽  
Haisen Huang ◽  
Xin Gao ◽  
Jian Yang ◽  
Qi Tang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document