Compensating the cell-induced light scattering effect in light-based bioprinting using deep learning

2021 ◽  
Author(s):  
Jiaao Guan ◽  
Shangting You ◽  
Yi Xiang ◽  
Jacob Schimelman ◽  
Jeffrey Alido ◽  
...  

Abstract Digital light processing (DLP)-based 3D printing technology has the advantages of speed and precision comparing with other 3D printing technologies like extrusion-based 3D printing. Therefore, it is a promising biomaterial fabrication technique for tissue engineering and regenerative medicine. When printing cell-laden biomaterials, one challenge of DLP-based bioprinting is the light scattering effect of the cells in the bioink, and therefore induce unpredictable effects on the photopolymerization process. In consequence, the DLP-based bioprinting requires extra trial-and-error efforts for parameters optimization for each specific printable structure to compensate the scattering effects induced by cells, which is often difficult and time-consuming for a machine operator. Such trial-and-error style optimization for each different structure is also very wasteful for those expensive biomaterials and cell lines. Here, we use machine learning to learn from a few trial sample printings and automatically provide printer the optimal parameters to compensate the cell-induced scattering effects. We employ a deep learning method with a learning-based data augmentation which only requires a small amount of training data. After learning from the data, the algorithm can automatically generate the printer parameters to compensate the scattering effects. Our method shows strong improvement in the intra-layer printing resolution for bioprinting, which can be further extended to solve the light scattering problems in multilayer 3D bioprinting processes.

Diagnostics ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1052
Author(s):  
Leang Sim Nguon ◽  
Kangwon Seo ◽  
Jung-Hyun Lim ◽  
Tae-Jun Song ◽  
Sung-Hyun Cho ◽  
...  

Mucinous cystic neoplasms (MCN) and serous cystic neoplasms (SCN) account for a large portion of solitary pancreatic cystic neoplasms (PCN). In this study we implemented a convolutional neural network (CNN) model using ResNet50 to differentiate between MCN and SCN. The training data were collected retrospectively from 59 MCN and 49 SCN patients from two different hospitals. Data augmentation was used to enhance the size and quality of training datasets. Fine-tuning training approaches were utilized by adopting the pre-trained model from transfer learning while training selected layers. Testing of the network was conducted by varying the endoscopic ultrasonography (EUS) image sizes and positions to evaluate the network performance for differentiation. The proposed network model achieved up to 82.75% accuracy and a 0.88 (95% CI: 0.817–0.930) area under curve (AUC) score. The performance of the implemented deep learning networks in decision-making using only EUS images is comparable to that of traditional manual decision-making using EUS images along with supporting clinical information. Gradient-weighted class activation mapping (Grad-CAM) confirmed that the network model learned the features from the cyst region accurately. This study proves the feasibility of diagnosing MCN and SCN using a deep learning network model. Further improvement using more datasets is needed.


2021 ◽  
Vol 11 (15) ◽  
pp. 7148
Author(s):  
Bedada Endale ◽  
Abera Tullu ◽  
Hayoung Shi ◽  
Beom-Soo Kang

Unmanned aerial vehicles (UAVs) are being widely utilized for various missions: in both civilian and military sectors. Many of these missions demand UAVs to acquire artificial intelligence about the environments they are navigating in. This perception can be realized by training a computing machine to classify objects in the environment. One of the well known machine training approaches is supervised deep learning, which enables a machine to classify objects. However, supervised deep learning comes with huge sacrifice in terms of time and computational resources. Collecting big input data, pre-training processes, such as labeling training data, and the need for a high performance computer for training are some of the challenges that supervised deep learning poses. To address these setbacks, this study proposes mission specific input data augmentation techniques and the design of light-weight deep neural network architecture that is capable of real-time object classification. Semi-direct visual odometry (SVO) data of augmented images are used to train the network for object classification. Ten classes of 10,000 different images in each class were used as input data where 80% were for training the network and the remaining 20% were used for network validation. For the optimization of the designed deep neural network, a sequential gradient descent algorithm was implemented. This algorithm has the advantage of handling redundancy in the data more efficiently than other algorithms.


Author(s):  
Uzma Batool ◽  
Mohd Ibrahim Shapiai ◽  
Nordinah Ismail ◽  
Hilman Fauzi ◽  
Syahrizal Salleh

Silicon wafer defect data collected from fabrication facilities is intrinsically imbalanced because of the variable frequencies of defect types. Frequently occurring types will have more influence on the classification predictions if a model gets trained on such skewed data. A fair classifier for such imbalanced data requires a mechanism to deal with type imbalance in order to avoid biased results. This study has proposed a convolutional neural network for wafer map defect classification, employing oversampling as an imbalance addressing technique. To have an equal participation of all classes in the classifier’s training, data augmentation has been employed, generating more samples in minor classes. The proposed deep learning method has been evaluated on a real wafer map defect dataset and its classification results on the test set returned a 97.91% accuracy. The results were compared with another deep learning based auto-encoder model demonstrating the proposed method, a potential approach for silicon wafer defect classification that needs to be investigated further for its robustness.


2020 ◽  
Vol 12 (7) ◽  
pp. 1092
Author(s):  
David Browne ◽  
Michael Giering ◽  
Steven Prestwich

Scene classification is an important aspect of image/video understanding and segmentation. However, remote-sensing scene classification is a challenging image recognition task, partly due to the limited training data, which causes deep-learning Convolutional Neural Networks (CNNs) to overfit. Another difficulty is that images often have very different scales and orientation (viewing angle). Yet another is that the resulting networks may be very large, again making them prone to overfitting and unsuitable for deployment on memory- and energy-limited devices. We propose an efficient deep-learning approach to tackle these problems. We use transfer learning to compensate for the lack of data, and data augmentation to tackle varying scale and orientation. To reduce network size, we use a novel unsupervised learning approach based on k-means clustering, applied to all parts of the network: most network reduction methods use computationally expensive supervised learning methods, and apply only to the convolutional or fully connected layers, but not both. In experiments, we set new standards in classification accuracy on four remote-sensing and two scene-recognition image datasets.


Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6077
Author(s):  
Gerelmaa Byambatsogt ◽  
Lodoiravsal Choimaa ◽  
Gou Koutaki

In recent years, many researchers have shown increasing interest in music information retrieval (MIR) applications, with automatic chord recognition being one of the popular tasks. Many studies have achieved/demonstrated considerable improvement using deep learning based models in automatic chord recognition problems. However, most of the existing models have focused on simple chord recognition, which classifies the root note with the major, minor, and seventh chords. Furthermore, in learning-based recognition, it is critical to collect high-quality and large amounts of training data to achieve the desired performance. In this paper, we present a multi-task learning (MTL) model for a guitar chord recognition task, where the model is trained using a relatively large-vocabulary guitar chord dataset. To solve data scarcity issues, a physical data augmentation method that directly records the chord dataset from a robotic performer is employed. Deep learning based MTL is proposed to improve the performance of automatic chord recognition with the proposed physical data augmentation dataset. The proposed MTL model is compared with four baseline models and its corresponding single-task learning model using two types of datasets, including a human dataset and a human combined with the augmented dataset. The proposed methods outperform the baseline models, and the results show that most scores of the proposed multi-task learning model are better than those of the corresponding single-task learning model. The experimental results demonstrate that physical data augmentation is an effective method for increasing the dataset size for guitar chord recognition tasks.


2020 ◽  
Vol 10 (21) ◽  
pp. 7755 ◽  
Author(s):  
Liangliang Chen ◽  
Ning Yan ◽  
Hongmai Yang ◽  
Linlin Zhu ◽  
Zongwei Zheng ◽  
...  

Deep learning technology is outstanding in visual inspection. However, in actual industrial production, the use of deep learning technology for visual inspection requires a large number of training data with different acquisition scenarios. At present, the acquisition of such datasets is very time-consuming and labor-intensive, which limits the further development of deep learning in industrial production. To solve the problem of image data acquisition difficulty in industrial production with deep learning, this paper proposes a data augmentation method for deep learning based on multi-degree of freedom (DOF) automatic image acquisition and designs a multi-DOF automatic image acquisition system for deep learning. By designing random acquisition angles and random illumination conditions, different acquisition scenes in actual production are simulated. By optimizing the image acquisition path, a large number of accurate data can be obtained in a short time. In order to verify the performance of the dataset collected by the system, the fabric is selected as the research object after the system is built, and the dataset comparison experiment is carried out. The dataset comparison experiment confirms that the dataset obtained by the system is rich and close to the real application environment, which solves the problem of dataset insufficient in the application process of deep learning to a certain extent.


RSC Advances ◽  
2013 ◽  
Vol 3 (40) ◽  
pp. 18537 ◽  
Author(s):  
Rui Gao ◽  
Zhiqiang Liang ◽  
Jianjun Tian ◽  
Qifeng Zhang ◽  
Liduo Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document