Control of flow structures around a cylinder in deep water employing a passive control element

2019 ◽  
Vol 51 (5) ◽  
pp. 055512
Author(s):  
Sedat Yayla ◽  
Suleyman Teksin ◽  
Besir Sahin
2002 ◽  
Vol 16 (8) ◽  
pp. 1073-1092 ◽  
Author(s):  
M.D. MAHBUB ALAM ◽  
M. MORIYA ◽  
K. TAKAI ◽  
H. SAKAMOTO

Author(s):  
Thomas J. Thompson

Abstract Proposed space missions involve large structures which must maintain precise dimensional tolerances during dynamic maneuvers. In order to attenuate disturbances in the many modes of vibration of such structures, active and passive vibration control has been proposed. Passive control is to be achieved by placing viscous or viscoelastic members in a structure to absorb energy, while active control similarly could involve structural members (struts) capable of sensing axial displacement and exerting axial control force. With conventional modal analysis, the effect of a control element on a system is computed by summing its influence on many immutable modes. Since changes in mode shape must be described by this summation, truncation of higher modes results in inaccuracies. The compliant model of vibration to be presented accurately accounts for the effects of locally-acting control elements without inclusion of high-frequency modes. The motion of each spring-mass system representing a structural mode is modified by a control element in series with another stiffness inherent to the structure for that mode and control position. In order to predict the influence of several control elements or dampers on closely-spaced modes, the compliant models for those modes are integrated into a spherical model in which one lumped mass is acted upon by orthogonal modal stiffnesses. In the spherical model, control elements influent the lumped mass from orientations determined by mode participation factors. The resulting equations of motion are stated in standard state-space form. To test accuracy, the compliant model is used to predict eigenvalue shifts due to springs and dampers acting upon an axially-vibrating rod, and the spherical model is used to predict damping accurately in a lumped-mass system with closely-spaced modes.


Author(s):  
Ghazali Mebarki ◽  
Samir Rahal

Passive heat transfer techniques are considered to be one of the most important means to enhance heat transfer in heat exchangers that allow also reducing their size and manufacturing cost. Moreover, this passive technique can also be used to control the thermal instabilities caused by the two-phase flow in the evaporators. The thermal instabilities are undesirable because they can lead to a tube failure. For this purpose, a numerical study of the two-phase flow with evaporation in a vertical tube has been performed in this work. The volume of fluid (VOF) multiphase flow method has been used to model the water vapor–liquid two-phase flow in the tube. A phase-change model, for which source terms have been added in the continuity and energy equation, has been used to model the vaporization. The numerical simulation procedure was validated by comparing the obtained results with those given in the literature. The passive control technique used here is a ring element with square cross section, acting as a vortex generator, which is attached to the tube wall at various positions along the tube. Instabilities of temperature and void fraction at the tube wall have been analyzed using fast Fourier transforms (FFTs). The results show that the attachment of the control element has a significant influence on the value and distribution of the void fraction. Higher positions of the control element along the tube allow reducing the magnitude of void fraction oscillations.


2012 ◽  
Vol 25 ◽  
pp. 01065 ◽  
Author(s):  
Muammer Ozgoren ◽  
Sercan Dogan ◽  
Abdulkerim Okbaz ◽  
Besir Sahin ◽  
Huseyin Akilli

Sign in / Sign up

Export Citation Format

Share Document