Free-space to single-mode fiber coupling efficiency with optical system aberration and fiber positioning error under atmospheric turbulence

2021 ◽  
Author(s):  
Yiming Bian ◽  
Yan Li ◽  
Erhu Chen ◽  
Wei Li ◽  
Xiaobin Hong ◽  
...  

Abstract Benefiting from the rapid development of fiber-optic devices, high-speed free-space optical communication systems have recently used fiber-optic components. The received laser beam in such a system couples into single-mode fiber (SMF) at the input of the receiver module. This work is oriented to common problems in actual free-space optical coupling systems, such as atmospheric turbulence, optical system aberration, and fiber positioning error. We derive the statistical expectation models of SMF coupling efficiency with optical system aberration in the presence of atmospheric turbulence and the statistical expectation models of SMF coupling efficiency with fiber positioning error in the presence of atmospheric turbulence. The influences of optical system aberration and fiber positioning error on the coupling efficiency under different turbulence strengths are also analyzed in this paper.

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Xizheng Ke ◽  
Benkang Yin

This study aims to solve the difficulties in the coupling between space light and single-mode fiber (SMF) in free-space optical communication. A fiber coupler based on two-dimensional (2D) piezoelectric ceramics was developed, which uses the stochastic parallel gradient descent (SPGD) algorithm to realize the automatic coupling of space light-SMF. In addition, a spatial light-SMF alignment experimentation platform was built indoors to verify the effectiveness and practicality of the 2D piezoelectric ceramic fiber coupler. The results show that the use of the SPGD algorithm can realize the automatic alignment of fiber position coupling, and the SMF coupling efficiency reaches 52.58% when the system is closed loop. 2D piezoelectric ceramic fiber couplers have unique advantages of low cost, simplified structure, and easy array expansion and can effectively solve the difficulty in the alignment of spatial light-SMF coupling. This study will serve as a significant reference for the research on spatial fiber-coupled array technology.


2015 ◽  
Vol 42 (5) ◽  
pp. 0513001 ◽  
Author(s):  
吴晓军 Wu Xiaojun ◽  
王红星 Wang Hongxing ◽  
李笔锋 Li Bifeng ◽  
宋博 Song Bo

Sign in / Sign up

Export Citation Format

Share Document