Analysis of single-degree-of-freedom piezoelectric energy harvester with stopper by incremental harmonic balance method

2018 ◽  
Vol 5 (5) ◽  
pp. 055502 ◽  
Author(s):  
Dan Zhao ◽  
Xiaoman Wang ◽  
Yuan Cheng ◽  
Shaogang Liu ◽  
Yanhong Wu ◽  
...  
2004 ◽  
Vol 26 (3) ◽  
pp. 157-166
Author(s):  
Nguyen Van Khang ◽  
Thai Manh Cau

In this paper the incremental harmonic balance method is used to calculate periodic vibrations of nonlinear autonomous multip-degree-of-freedom systems. According to Floquet theory, the stability of a periodic solution is checked by evaluating the eigenvalues of the monodromy matrix. Using the programme MAPLE, the authors have studied the periodic vibrations of the system multi-degree van der Pol form.


Author(s):  
Richard Wiebe ◽  
Lawrence N. Virgin

Under dynamic loading, systems with the requisite condition for snap-through buckling, that is co-existing equilibria, typically exhibit either small amplitude response about a single equilibrium configuration, or large amplitude response that transits between the static equilibria. Dynamic snap-through is the name given to the large amplitude response, which, in the context of structural systems, is obviously undesirable. Structures with underlying snap-through static behavior may exhibit highly nonlinear and unpredictable oscillations. Such systems rarely lend themselves to investigation by analytical means. This is not surprising as nonlinear phenomena such as chaos run counter to the predictability of an analytical closed form solution. However, many unexpected analytical approximations of global stability may be obtained for simple systems using the harmonic balance method. In this paper a simple single-degree-of-freedom arch is studied using the harmonic balance method. The equations developed with the harmonic balance approach are then solved using an arc-length method and an approximate snap-through boundary in forcing parameter space is obtained. The method is shown to exhibit excellent agreement with numerical results. Arches present an ideal avenue for the investigation of snap-through as they typically have multiple, often tunable, stable and unstable equilibria. They also have many applications in both civil engineering, where arches are a canonical structural element, and mechanical/aerospace engineering, where arches may be used to approximate the behavior of curved plates and panels such as those used on aircraft.


2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Hongliang Yao ◽  
Qian Zhao ◽  
Qi Xu ◽  
Bangchun Wen

The efficiency and accuracy of common time and frequency domain methods that are used to simulate the response of a rotor system with malfunctions are compared and analyzed. The Newmark method and the incremental harmonic balance method are selected as typical representatives of time and frequency domain methods, respectively. To improve the simulation efficiency, the fixed interface component mode synthesis approach is combined with the Newmark method and the receptance approach is combined with the incremental harmonic balance method. Numerical simulations are performed for rotor systems with single and double frequency excitations. The inherent characteristic that determines the efficiency of the two methods is analyzed. The results of the analysis indicated that frequency domain methods are suitable single and double frequency excitation rotor systems, whereas time domain methods are more suitable for multifrequency excitation rotor systems.


Sign in / Sign up

Export Citation Format

Share Document