Simulation of solid-liquid flows in a stirred bead mill based on computational fluid dynamics (CFD)

2018 ◽  
Vol 5 (5) ◽  
pp. 054002 ◽  
Author(s):  
S Winardi ◽  
W Widiyastuti ◽  
E L Septiani ◽  
T Nurtono
2006 ◽  
Vol 530-531 ◽  
pp. 376-381 ◽  
Author(s):  
Luiz Gustavo Martins Vieira ◽  
João Jorge Ribeiro Damasceno ◽  
Marcos A.S. Barrozo

Hydrocyclones are centrifugal devices employed on the solid-liquid and liquid-liquid separation. The operation and building of these devices are relatively simple, however the flow inside them is totally complex and its prediction is very difficult. The fluid moves on all possible directions (axial, radial and swirl), the effects of turbulence can not negligible and an air core along the center line of the hydrocyclone can appear when the operational conditions are favorable. For that reason, the most models that are used to predict the hydrocyclone performance are empirical and require the collection of the main operational and geometric variables in order to validate them. This work objectified to apply Computational Fluid Dynamics (CFD) on Bradley Hydrocyclone and compare the results from this technique to empirical models. The numerical simulation was made in a computational code called Fluent® that solves the transport equation by finite volume technique. The turbulence was described by Reynolds Stress Model (RSM) and the liquid-gas interface was treated by Volume of Fluid Model (VOF). In agreement with the results from the simulation, it was possible to predict the internal profiles of velocity, pressure, air core, particle trajectories, efficiencies, pressure drop and underflow-to-throughput ratio.


2021 ◽  
Author(s):  
Fabio Borgia

The filtering hydro cyclone is a solid–liquid separation device, generally conical in shape. The hydro cyclone allows the separation of microplastics from water, to facilitate micro-recycling. To test the capabilities of a hydro cyclone at separating microplastics from water, Rietema’s standard sizes, mathematical and computational fluid dynamics (CFD) modeling were used. The results show that, even dough the mathematical model in unreliable when considering parameters out-side standard operation conditions, hydro cyclone microplastic separation can be achieved at 98% efficiency. Particles reach the outlet on average in 1.5 s for a flow velocity of 2 m/s, and denser microplastics end up in the underflow.


2005 ◽  
Vol 498-499 ◽  
pp. 264-269
Author(s):  
Luiz Gustavo Martins Vieira ◽  
João Jorge Ribeiro Damasceno ◽  
Marcos A.S. Barrozo

Hydrocyclones are centrifugal devices employed on the solid-liquid and liquid-liquid separation. The operation and building of these devices are relatively simple, however the flow inside them is totally complex and its prediction is very difficult. The fluid moves on all possible directions (axial, radial and swirl), the effects of turbulence can not negligible and an air core along the center line of the hydrocyclone can appear when the operational conditions are favorable. For that reason, the most models that are used to predict the hydrocyclone performance are empirical and require the collection of the main operational and geometric variables in order to validate them. This work objectified to apply Computational Fluid Dynamics (CFD) on Bradley Hydrocyclone and compare the results from this technique to empirical models. The numerical simulation was made in a computational code called Fluent® that solves the transport equation by finite volume technique. The turbulence was described by Reynolds Stress Model (RSM) and the liquid-gas interface was treated by Volume of Fluid Model (VOF). In agreement with the results from the simulation, it was possible to predict the internal profiles of velocity, pressure, air core, particle trajectories, efficiencies, pressure drop and underflow-to-throughput ratio.


1996 ◽  
Vol 33 (9) ◽  
pp. 163-170 ◽  
Author(s):  
Virginia R. Stovin ◽  
Adrian J. Saul

Research was undertaken in order to identify possible methodologies for the prediction of sedimentation in storage chambers based on computational fluid dynamics (CFD). The Fluent CFD software was used to establish a numerical model of the flow field, on which further analysis was undertaken. Sedimentation was estimated from the simulated flow fields by two different methods. The first approach used the simulation to predict the bed shear stress distribution, with deposition being assumed for areas where the bed shear stress fell below a critical value (τcd). The value of τcd had previously been determined in the laboratory. Efficiency was then calculated as a function of the proportion of the chamber bed for which deposition had been predicted. The second method used the particle tracking facility in Fluent and efficiency was calculated from the proportion of particles that remained within the chamber. The results from the two techniques for efficiency are compared to data collected in a laboratory chamber. Three further simulations were then undertaken in order to investigate the influence of length to breadth ratio on chamber performance. The methodology presented here could be applied to complex geometries and full scale installations.


2021 ◽  
Vol 54 ◽  
pp. 102207
Author(s):  
Cristian Inostroza ◽  
Alessandro Solimeno ◽  
Joan García ◽  
José M. Fernández-Sevilla ◽  
F. Gabriel Acién

Sign in / Sign up

Export Citation Format

Share Document