scholarly journals Contributions to 21st century projections of extreme sea-level change around the UK

2019 ◽  
Vol 1 (9) ◽  
pp. 095002 ◽  
Author(s):  
Tom Howard ◽  
Matthew D Palmer ◽  
Lucy M Bricheno
2018 ◽  
Vol 97 (3) ◽  
pp. 79-127 ◽  
Author(s):  
Bert L.A. Vermeersen ◽  
Aimée B.A. Slangen ◽  
Theo Gerkema ◽  
Fedor Baart ◽  
Kim M. Cohen ◽  
...  

AbstractRising sea levels due to climate change can have severe consequences for coastal populations and ecosystems all around the world. Understanding and projecting sea-level rise is especially important for low-lying countries such as the Netherlands. It is of specific interest for vulnerable ecological and morphodynamic regions, such as the Wadden Sea UNESCO World Heritage region.Here we provide an overview of sea-level projections for the 21st century for the Wadden Sea region and a condensed review of the scientific data, understanding and uncertainties underpinning the projections. The sea-level projections are formulated in the framework of the geological history of the Wadden Sea region and are based on the regional sea-level projections published in the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR5). These IPCC AR5 projections are compared against updates derived from more recent literature and evaluated for the Wadden Sea region. The projections are further put into perspective by including interannual variability based on long-term tide-gauge records from observing stations at Den Helder and Delfzijl.We consider three climate scenarios, following the Representative Concentration Pathways (RCPs), as defined in IPCC AR5: the RCP2.6 scenario assumes that greenhouse gas (GHG) emissions decline after 2020; the RCP4.5 scenario assumes that GHG emissions peak at 2040 and decline thereafter; and the RCP8.5 scenario represents a continued rise of GHG emissions throughout the 21st century. For RCP8.5, we also evaluate several scenarios from recent literature where the mass loss in Antarctica accelerates at rates exceeding those presented in IPCC AR5.For the Dutch Wadden Sea, the IPCC AR5-based projected sea-level rise is 0.07±0.06m for the RCP4.5 scenario for the period 2018–30 (uncertainties representing 5–95%), with the RCP2.6 and RCP8.5 scenarios projecting 0.01m less and more, respectively. The projected rates of sea-level change in 2030 range between 2.6mma−1for the 5th percentile of the RCP2.6 scenario to 9.1mma−1for the 95th percentile of the RCP8.5 scenario. For the period 2018–50, the differences between the scenarios increase, with projected changes of 0.16±0.12m for RCP2.6, 0.19±0.11m for RCP4.5 and 0.23±0.12m for RCP8.5. The accompanying rates of change range between 2.3 and 12.4mma−1in 2050. The differences between the scenarios amplify for the 2018–2100 period, with projected total changes of 0.41±0.25m for RCP2.6, 0.52±0.27m for RCP4.5 and 0.76±0.36m for RCP8.5. The projections for the RCP8.5 scenario are larger than the high-end projections presented in the 2008 Delta Commission Report (0.74m for 1990–2100) when the differences in time period are considered. The sea-level change rates range from 2.2 to 18.3mma−1for the year 2100.We also assess the effect of accelerated ice mass loss on the sea-level projections under the RCP8.5 scenario, as recent literature suggests that there may be a larger contribution from Antarctica than presented in IPCC AR5 (potentially exceeding 1m in 2100). Changes in episodic extreme events, such as storm surges, and periodic (tidal) contributions on (sub-)daily timescales, have not been included in these sea-level projections. However, the potential impacts of these processes on sea-level change rates have been assessed in the report.


Author(s):  
M.N Tsimplis ◽  
D.K Woolf ◽  
T.J Osborn ◽  
S Wakelin ◽  
J Wolf ◽  
...  

Within the framework of a Tyndall Centre research project, sea level and wave changes around the UK and in the North Sea have been analysed. This paper integrates the results of this project. Many aspects of the contribution of the North Atlantic Oscillation (NAO) to sea level and wave height have been resolved. The NAO is a major forcing parameter for sea-level variability. Strong positive response to increasing NAO was observed in the shallow parts of the North Sea, while slightly negative response was found in the southwest part of the UK. The cause of the strong positive response is mainly the increased westerly winds. The NAO increase during the last decades has affected both the mean sea level and the extreme sea levels in the North Sea. The derived spatial distribution of the NAO-related variability of sea level allows the development of scenarios for future sea level and wave height in the region. Because the response of sea level to the NAO is found to be variable in time across all frequency bands, there is some inherent uncertainty in the use of the empirical relationships to develop scenarios of future sea level. Nevertheless, as it remains uncertain whether the multi-decadal NAO variability is related to climate change, the use of the empirical relationships in developing scenarios is justified. The resulting scenarios demonstrate: (i) that the use of regional estimates of sea level increase the projected range of sea-level change by 50% and (ii) that the contribution of the NAO to winter sea-level variability increases the range of uncertainty by a further 10–20 cm. On the assumption that the general circulation models have some skill in simulating the future NAO change, then the NAO contribution to sea-level change around the UK is expected to be very small (<4 cm) by 2080. Wave heights are also sensitive to the NAO changes, especially in the western coasts of the UK. Under the same scenarios for future NAO changes, the projected significant wave-height changes in the northeast Atlantic will exceed 0.4 m. In addition, wave-direction changes of around 20° per unit NAO index have been documented for one location. Such changes raise the possibility of consequential alteration of coastal erosion.


2014 ◽  
Vol 11 (1) ◽  
pp. 123-169 ◽  
Author(s):  
T. Howard ◽  
J. Ridley ◽  
A. K. Pardaens ◽  
R. T. W. L. Hurkmans ◽  
A. J. Payne ◽  
...  

Abstract. Climate change has the potential to locally influence mean sea level through a number of processes including (but not limited to) thermal expansion of the oceans and enhanced land ice melt. These lead to departures from the global mean sea level change, due to spatial variations in the change of water density and transport, which are termed dynamic sea level changes. In this study we present regional patterns of sea-level change projected by a global coupled atmosphere–ocean climate model forced by projected ice-melt fluxes from three sources: the Antarctic ice sheet, the Greenland ice sheet and small glaciers and ice caps. The largest ice melt flux we consider is equivalent to almost 0.7 m of global sea level rise over the 21st century. Since the ice melt is not constant, the evolution of the dynamic sea level changes is analysed. We find that the dynamic sea level change associated with the ice melt is small, with the largest changes, occurring in the North Atlantic, contributing of order 3 cm above the global mean rise. Furthermore, the dynamic sea level change associated with the ice melt is similar regardless of whether the simulated ice fluxes are applied to a simulation with fixed or changing atmospheric CO2.


2015 ◽  
Vol 36 (9) ◽  
pp. 3237-3244 ◽  
Author(s):  
Y. H. He ◽  
H. Y. Mok ◽  
Edwin S. T. Lai

2021 ◽  
Author(s):  
Lesley Allison ◽  
Matthew Palmer ◽  
Ivan Haigh

&lt;p&gt;In this work we explore projections of future sea level change using methods that build upon those used for the IPCC 5&lt;sup&gt;th&lt;/sup&gt; Assessment Report (AR5) and Special Report on Oceans and Cryosphere in a Changing Climate (SROCC). These methods use a large Monte Carlo simulation to represent the uncertainty across components of sea level change.&amp;#160; The Monte Carlo approach for global mean sea level is extended to local projections for individual tide gauge locations to ensure traceablity to the global mean projections and preserve correlations between terms in the sea level budget.&amp;#160; As part of the WCSSP South Africa programme (which is a collaborative initiative between the Met Office in the UK and the South African Weather Service), we explore the sea level components for locations around the coast of South Africa and examine the physical drivers of local sea level change signals.&amp;#160; For the individual tide gauge locations, the projection uncertainty is larger than it is for the global mean, but several key details emerge and the drivers of these will be discussed.&lt;/p&gt;


2002 ◽  
Vol 17 (5-6) ◽  
pp. 411-429 ◽  
Author(s):  
Helen M. Roe ◽  
Dan J. Charman ◽  
W. Roland Gehrels

Sign in / Sign up

Export Citation Format

Share Document