Hydrodynamic description of plasmas

Author(s):  
Luis Conde
2013 ◽  
Vol 22 (09) ◽  
pp. 1350069 ◽  
Author(s):  
ZHIJIN JIANG ◽  
QINGGUANG LI ◽  
GUANXIANG JIANG

By using the revised Landau hydrodynamic model and taking into account the effect of leading particles, we discuss the pseudorapidity distributions of produced charged particles in high energy heavy-ion collisions. The charged particles resulted from the freeze-out of the matter produced in collisions possess the Gaussian-like rapidity distributions. The leading particles are assumed having the rapidity distributions of the Gaussian form with the normalization constant being equal to the number of participants, which can be figured out in theory. It is found that the results from the revised Landau hydrodynamic model together with the contributions from leading particles are well consistent with the experimental data carried out by BNL-RHIC-PHOBOS Collaboration in different centrality Au + Au collisions at energies of [Formula: see text], 130 and 62.4 GeV , respectively.


2006 ◽  
Vol 74 (2) ◽  
Author(s):  
Eric Bertin ◽  
Michel Droz ◽  
Guillaume Grégoire

2015 ◽  
Vol 22 (2) ◽  
pp. 023710 ◽  
Author(s):  
Sanat Kumar Tiwari ◽  
Vikram Singh Dharodi ◽  
Amita Das ◽  
Bhavesh G. Patel ◽  
Predhiman Kaw

1991 ◽  
Vol 84 (3) ◽  
pp. 361-367 ◽  
Author(s):  
J. Soml�i ◽  
R. A. Bakker ◽  
A. L�rincz

2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Andrea Amoretti ◽  
Daniel Areán ◽  
Daniel K. Brattan ◽  
Luca Martinoia

Abstract We employ hydrodynamics and gauge/gravity to study magneto-transport in phases of matter where translations are broken (pseudo-)spontaneously. First we provide a hydrodynamic description of systems where translations are broken homogeneously at nonzero lattice pressure and magnetic field. This allows us to determine analytic expressions for all the relevant transport coefficients. Next we construct holographic models of those phases and determine all the DC conductivities in terms of the dual black hole geometry. Combining the hydrodynamic and holographic descriptions we obtain analytic expression for the AC thermo-electric correlators. These are fixed in terms of the black hole geometry and a pinning frequency we determine numerically. We find an excellent agreement between our hydrodynamic and holographic descriptions and show that the holographic models are good avatars for the study of magneto-phonons.


2007 ◽  
Vol 21 (13n14) ◽  
pp. 2091-2102
Author(s):  
M. D. MILLER ◽  
E. KROTSCHECK

In this paper, we summarize the results of recent studies of third sound in thin, superfluid 3 He -4 He mixture films and the relation of the third sound spectrum to the question of the films' thermodynamic stability. We have considered films on several representative substrates: Nuclepore, glass, Li and Na . Our approach utilizes the variational, hypernetted chain/Euler-Lagrange (HNC–EL) theory as applied to inhomogeneous boson systems to calculate chemical potentials for both the 4 He superfluid film and the physisorbed 3 He . Numerical density derivatives of the chemical potentials lead to the sought-after third sound speeds. On all substrates, the third sound speeds show a series of oscillations as a function of film coverage that is driven by the layered structure of the 4 He film. We find that the effect on the third sound response of adding a small amount of 3 He to the 4 He film can depend sensitively on the particular 4 He film coverage. The third sound speed can either increase or decrease. In fact, in some regimes, the added 3 He destabilizes the film and can drive "layering transitions" leading to quite complicated geometric structures of the film in which the outermost layer consists of phase–separated regimes of 3 He and 4 He . Finally, we examine the range of applicability of the usual film–averaged hydrodynamic description. We find that at least up to film thicknesses of six liquid layers, there is no regime in which this hydrodynamic description is applicable.


Sign in / Sign up

Export Citation Format

Share Document