Theories for electronic excitations and de-excitations in 1D–3D carbon nanotube systems

Author(s):  
Chiun-Yan Lin ◽  
Cheng-Hsueh Yang ◽  
Chih-Wei Chiu ◽  
Hsien-Ching Chung ◽  
Shih-Yang Lin ◽  
...  
Author(s):  
P. E. Batson ◽  
C. H. Chen ◽  
J. Silcox

Electron energy loss experiments combined with microscopy have proven to be a valuable tool for the exploration of the structure of electronic excitations in materials. These types of excitations, however, are difficult to measure because of their small intensity. In a usual situation, the filament of the microscope is run at a very high temperature in order to present as much intensity as possible at the specimen. This results in a degradation of the ultimate energy resolution of the instrument due to thermal broadening of the electron beam.We report here observations and measurements on a new LaB filament in a microscope-velocity spectrometer system. We have found that, in general, we may retain a good energy resolution with intensities comparable to or greater than those available with the very high temperature tungsten filament. We have also explored the energy distribution of this filament.


Author(s):  
H.-S. Philip Wong ◽  
Deji Akinwande

Pneumologie ◽  
2011 ◽  
Vol 65 (12) ◽  
Author(s):  
NC Habel ◽  
S Hirn ◽  
F Tian ◽  
O Eickelberg ◽  
T Stoeger

1985 ◽  
Vol 147 (11) ◽  
pp. 523 ◽  
Author(s):  
M.I. Klinger ◽  
Ch.B. Lushchik ◽  
T.V. Mashovets ◽  
G.A. Kholodar' ◽  
M.K. Sheinkman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document