Trapped-electron turbulence

Author(s):  
Bruce Scott
Keyword(s):  
2009 ◽  
Vol 78 (12) ◽  
pp. 1153-1156
Author(s):  
K. Norizawa ◽  
T. Kondoh ◽  
J. Yang ◽  
A. Ogata ◽  
Y. Yoshida

2021 ◽  
Vol 28 (5) ◽  
pp. 052510
Author(s):  
X. R. Zhang ◽  
J. Q. Dong ◽  
H. R. Du ◽  
J. Y. Liu ◽  
Y. Shen ◽  
...  

2005 ◽  
Vol 12 (7) ◽  
pp. 072309 ◽  
Author(s):  
Tilman Dannert ◽  
Frank Jenko

Author(s):  
shuyu Zheng ◽  
Debing Zhang ◽  
Erbing Xue ◽  
Limin Yu ◽  
Xianmei Zhang ◽  
...  

Abstract High poloidal beta scenarios with favorable energy confinement (β_p~1.9, H_98y2~1.4) have been achieved on Experimental Advanced Superconducting Tokamak (EAST) using only radio frequency waves heating. Gyrokinetic simulations are carried out with experimental plasma parameters and tokamak equilibrium data of a typical high β_p discharge by the GTC code. Linear simulations show that electron temperature scale length and electron density scale length destabilize the turbulence, collision effects stabilize the turbulence, and the instability propagates in the electron diamagnetic direction. These indicate that the dominant instability in the core of high β_p plasma is collisionless trapped electron mode. Ion thermal diffusivities calculated by nonlinear gyrokinetic simulations are consistent with the experimental value, in which the electron collision effects play an important role. Further analyses show that instabilities with k_θ ρ_s>0.38 are suppressed by collision effects and collision effects reduce the radial correlation length of turbulence, resulting in the suppression of the turbulence.


Sign in / Sign up

Export Citation Format

Share Document