Influence of Amino Acid Substitutions on Antigenicity of Immunodominant Regions of the HTLV Type I Envelope Surface Gylcoprotein: A Study Using Monoclonal Antibodies Raised against Relevant Peptides

1999 ◽  
Vol 15 (10) ◽  
pp. 909-920 ◽  
Author(s):  
D. Londos-Gagliardi ◽  
V. Jauvin ◽  
M.-H. Armengaut ◽  
T. Astier-Gin ◽  
M. Goetz ◽  
...  
Blood ◽  
2001 ◽  
Vol 97 (4) ◽  
pp. 1106-1114 ◽  
Author(s):  
Jan Dekker ◽  
Michel H. M. Eppink ◽  
Rob van Zwieten ◽  
Thea de Rijk ◽  
Angel F. Remacha ◽  
...  

Abstract Cytochrome b5 reductase (b5R) deficiency manifests itself in 2 distinct ways. In methemoglobinemia type I, the patients only suffer from cyanosis, whereas in type II, the patients suffer in addition from severe mental retardation and neurologic impairment. Biochemical data indicate that this may be due to a difference in mutations, causing enzyme instability in type I and complete enzyme deficiency or enzyme inactivation in type II. We have investigated 7 families with methemoglobulinemia type I and found 7 novel mutations in the b5R gene. Six of these mutations predicted amino acid substitutions at sites not involved in reduced nicotinamide adenine dinucleotide (NADH) or flavin adenine dinucleotide (FAD) binding, as deduced from a 3-dimensional model of human b5R. This model was constructed from comparison with the known 3-dimensional structure of pig b5R. The seventh mutation was a splice site mutation leading to skipping of exon 5 in messenger RNA, present in heterozygous form in a patient together with a missense mutation on the other allele. Eight other amino acid substitutions, previously described to cause methemoglobinemia type I, were also situated in nonessential regions of the enzyme. In contrast, 2 other substitutions, known to cause the type II form of the disease, were found to directly affect the consensus FAD-binding site or indirectly influence NADH binding. Thus, these data support the idea that enzyme inactivation is a cause of the type II disease, whereas enzyme instability may lead to the type I form.


2008 ◽  
Vol 82 (13) ◽  
pp. 6753-6757 ◽  
Author(s):  
Satoshi Komoto ◽  
Masanori Kugita ◽  
Jun Sasaki ◽  
Koki Taniguchi

ABSTRACT Recombinant rotavirus (RV) with cDNA-derived chimeric VP4 was generated using recently developed reverse genetics for RV. The rescued virus, KU//rVP4(SA11)-II(DS-1), contains SA11 (simian RV strain, G3P[2])-based VP4, in which a cross-reactive neutralization epitope (amino acids 381 to 401) on VP5* is replaced by the corresponding sequence of a different P-type DS-1 (human RV strain, G2P[4]). Serological analyses with a panel of anti-VP4- and -VP7-neutralizing monoclonal antibodies revealed that the rescued virus carries a novel antigenic mosaic of cross-reactive neutralization epitopes on its VP4 surface. This is the first report of the generation of a recombinant RV with artificial amino acid substitutions.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1211-1211
Author(s):  
Jasper C. Lin ◽  
Jason T. Schuman ◽  
Shannon L. Meeks ◽  
John F. Healey ◽  
Arthur R. Thompson ◽  
...  

Abstract The most troublesome clinical complication that can afflict hemophilia A patients who receive factor VIII (FVIII) infusions as replacement therapy is the development of an anti-FVIII immune response, in which antibodies bind to functionally important FVIII surfaces, thereby blocking the pro-coagulant function of this important plasma protein cofactor. These antibodies, commonly referred to as “FVIII inhibitors”, bind primarily to the FVIII A2 and C2 domains and to the C-terminal region of the C1 domain, and inhibitors mapping to other regions have also been seen. There are multiple epitopes on the FVIII C2 domain, reflecting both its immunogenicity/antigenicity and its diverse roles in mediating interactions between FVIII and other molecules. For example, the C2 domain is essential for binding of FVIII to its carrier protein von Willebrand factor (VWF). Proteolytic activation to FVIIIa causes its release from VWF and subsequent binding to negatively charged membrane surfaces, e.g. on activated platelets, whereupon a region that overlaps the VWF binding site contacts the membrane. The C2 domain also interacts with thrombin and factor Xa, which both can activate FVIII. To better understand the basis for FVIII inhibition, and to better delineate functionally important FVIII surfaces, a panel of 56 murine anti-C2 monoclonal antibodies was generated. Competition ELISAs and functional assays were used to classify the antibodies into five groups corresponding to distinct regions on the C2 surface, which comprised a larger number of distinct epitopes (Meeks et al., Blood110, 4234–42, 2007). The present study is a high-resolution mapping of the epitopes recognized by six representative antibodies (2-77, 2-117, 3D12, 3E6, I109 and I54) using surface plasmon resonance (SPR). Each antibody was immobilized covalently via amine coupling to a CM5 chip or was captured by a rat anti-mouse IgG attached covalently to a CM5 chip. Referring to the FVIII C2 domain crystal structure (Pratt et al., Nature402, 439–42, 1999), surface-exposed amino acids were selected for mutagenesis using the Stratagene Quik-Change system, and C2 constructs with single substitutions to alanine or amino acids that were structurally similar to the wild-type residues were generated. Forty-five of these proteins were expressed in E. coli and purified; their purity and structural integrity were confirmed by SDS-PAGE and Western blot analysis. The on- and off-rates for binding of these proteins to the six monoclonal antibodies were determined using a Biacore T100 instrument. Mutations that affected binding significantly were analyzed by measuring association and dissociation constants over a temperature gradient (10–40°C), yielding estimates of changes in antibody-binding energy (ΔΔGº) of these mutant proteins compared to wild-type C2. Van’t Hoff analysis was carried out to determine the relative contributions of enthalpy and entropy to the binding energies. Interestingly, C2 binding to each antibody was abrogated by 1–5 of the 45 amino acid substitutions tested. Each of these C2 mutants bound to other antibodies with affinities similar to that of wild-type C2, indicating that this was not an artifact due to protein misfolding. The following substitutions resulted in little or no binding, as evidenced by a completely abated signal (very low Rmax compared to the wild-type C2 protein): L2273A (2-77, 2-117), R2220A (3D12, I109), Q2231A (I54) and T2272A (I109). Additional mutant proteins with reduced binding to inhibitor(s) displayed markedly higher dissociation constants and sometimes less pronounced differences in association constants compared to wild-type C2. Although several FVIII residues contributed to more than one epitope, each antibody had a unique epitope map profile. Our results suggest that a limited number of amino acid substitutions could produce a modified FVIII protein capable of eluding immunodominant inhibitors. This approach could eventually find clinical application as a novel strategy to achieve hemostasis in patients with an established FVIII inhibitor.


Viruses ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1672
Author(s):  
Taksoo Kim ◽  
Loc Tan Huynh ◽  
Shizuka Hirose ◽  
Manabu Igarashi ◽  
Takahiro Hiono ◽  
...  

The GPE− strain is a live attenuated vaccine for classical swine fever (CSF) developed in Japan. In the context of increasing attention for the differentiating infected from vaccinated animals (DIVA) concept, the achievement of CSF eradication with the GPE− proposes it as a preferable backbone for a recombinant CSF marker vaccine. While its infectious cDNA clone, vGPE−, is well characterized, 10 amino acid substitutions were recognized in the genome, compared to the original GPE− vaccine seed. To clarify the GPE− seed availability, this study aimed to generate and characterize a clone possessing the identical amino acid sequence to the GPE− seed. The attempt resulted in the loss of the infectious GPE− seed clone production due to the impaired replication by an amino acid substitution in the viral polymerase NS5B. Accordingly, replication-competent GPE− seed variant clones were produced. Although they were mostly restricted to propagate in the tonsils of pigs, similarly to vGPE−, their type I interferon-inducing capacity was significantly lower than that of vGPE−. Taken together, vGPE− mainly retains ideal properties for the CSF vaccine, compared with the seed variants, and is probably useful in the development of a CSF marker vaccine.


Sign in / Sign up

Export Citation Format

Share Document