scholarly journals Resting-State Functional Connectivity in Individuals with Down Syndrome and Williams Syndrome Compared with Typically Developing Controls

2015 ◽  
Vol 5 (8) ◽  
pp. 461-475 ◽  
Author(s):  
Jennifer N. Vega ◽  
Timothy J. Hohman ◽  
Jennifer R. Pryweller ◽  
Elisabeth M. Dykens ◽  
Tricia A. Thornton-Wells
2006 ◽  
Vol 14 (7S_Part_23) ◽  
pp. P1219-P1220
Author(s):  
Katherine A. Koenig ◽  
Stephen Ruedrich ◽  
Sanghoon Kim ◽  
James B. Leverenz

2021 ◽  
Author(s):  
Varun Kumar ◽  
Rahul Garg

Many studies investigate the alterations in resting state functional connectivity in autism. Most of these studies focus on different regions of the brain to find the connectivity differ- ences between autism spectrum disorder and typically developing populations. The present review quantitatively extracts this data from all the seed based studies on autism spectrum disorder and uses it to build, for the first time, an Autism Altered Functional Connectome (AAFC) which summarizes the alterations in functional connectivity consistently reported in the literature. The data extracted from all the studies matching the inclusion criteria are presented at one place in human as well as a machine-readable format for further interpretation and analysis. Systematically reviewing 41 publications on 2818 subjects comprising 1459 typically developing and 1359 subjects with autism spectrum disorder, a total of 932 altered functional connectivity links were employed to construct an AAFC. The AAL atlas mapping of these links resulted in 71 replicated links of which 49 were consistent, and 574 unreplicated links that were reported just once. Out of 49, 38 were replicated across different non overlapping datasets. Majority of the studies analyzed the functional connectivity of the Default Mode Network (DMN) and its regions. Two important DMN regions, namely precuneus and posterior cingulate cortex were reported to exhibit different connectivity profiles with former majorly underconnected and later majorly overconnected consistently reported across multiple studies. After mapping the AAFLs to an atlas of brain networks, poor integration within DMN regions, and poor segregation of DMN regions with extra-DMN regions was observed. Keywords: Connectome, Autism Spectrum Disorder, Brain, Magnetic Resonance Imaging


Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 1889-P
Author(s):  
ALLISON L.B. SHAPIRO ◽  
SUSAN L. JOHNSON ◽  
BRIANNE MOHL ◽  
GRETA WILKENING ◽  
KRISTINA T. LEGGET ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Maria J. S. Guerreiro ◽  
Madita Linke ◽  
Sunitha Lingareddy ◽  
Ramesh Kekunnaya ◽  
Brigitte Röder

AbstractLower resting-state functional connectivity (RSFC) between ‘visual’ and non-‘visual’ neural circuits has been reported as a hallmark of congenital blindness. In sighted individuals, RSFC between visual and non-visual brain regions has been shown to increase during rest with eyes closed relative to rest with eyes open. To determine the role of visual experience on the modulation of RSFC by resting state condition—as well as to evaluate the effect of resting state condition on group differences in RSFC—, we compared RSFC between visual and somatosensory/auditory regions in congenitally blind individuals (n = 9) and sighted participants (n = 9) during eyes open and eyes closed conditions. In the sighted group, we replicated the increase of RSFC between visual and non-visual areas during rest with eyes closed relative to rest with eyes open. This was not the case in the congenitally blind group, resulting in a lower RSFC between ‘visual’ and non-‘visual’ circuits relative to sighted controls only in the eyes closed condition. These results indicate that visual experience is necessary for the modulation of RSFC by resting state condition and highlight the importance of considering whether sighted controls should be tested with eyes open or closed in studies of functional brain reorganization as a consequence of blindness.


2021 ◽  
pp. 100345
Author(s):  
Zahra Rezaei ◽  
Zahra Jafari ◽  
Navvab Afrashteh ◽  
Reza Torabi ◽  
Surjeet Singh ◽  
...  

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Tiffany Bell ◽  
Akashroop Khaira ◽  
Mehak Stokoe ◽  
Megan Webb ◽  
Melanie Noel ◽  
...  

Abstract Background Migraine affects roughly 10% of youth aged 5–15 years, however the underlying mechanisms of migraine in youth are poorly understood. Multiple structural and functional alterations have been shown in the brains of adult migraine sufferers. This study aims to investigate the effects of migraine on resting-state functional connectivity during the period of transition from childhood to adolescence, a critical period of brain development and the time when rates of pediatric chronic pain spikes. Methods Using independent component analysis, we compared resting state network spatial maps and power spectra between youth with migraine aged 7–15 and age-matched controls. Statistical comparisons were conducted using a MANCOVA analysis. Results We show (1) group by age interaction effects on connectivity in the visual and salience networks, group by sex interaction effects on connectivity in the default mode network and group by pubertal status interaction effects on connectivity in visual and frontal parietal networks, and (2) relationships between connectivity in the visual networks and the migraine cycle, and age by cycle interaction effects on connectivity in the visual, default mode and sensorimotor networks. Conclusions We demonstrate that brain alterations begin early in youth with migraine and are modulated by development. This highlights the need for further study into the neural mechanisms of migraine in youth specifically, to aid in the development of more effective treatments.


Sign in / Sign up

Export Citation Format

Share Document