A Simple and Efficient Solution to Eliminate Evaporation in Mammalian Embryo Cultures

Author(s):  
Wen Bin Chen ◽  
Zoltan Machaty ◽  
Anabella Marconetto ◽  
Lodovico Parmegiani ◽  
Gábor Vajta
Author(s):  
Barry F. King ◽  
Grete N. Fry

The amnion surrounding the mammalian embryo consists of the amniotic epithelium facing the amniotic cavity, a layer of extraembryonic mesoderm bordering the exocoelom and an intervening layer of extracellular matrix (Fig. 1). During gestation the amnion expands remarkably to acommodate the rapidly growing embryo. In this study we have examined the process of collagen fibril formation in the developing amnion of the rhesus monkey between 20 and 60 days of gestation.Most cytological evidence of collagen fibril formation was observed in association with the extraembryonic mesodermal cells rather than the amniotic epithelium. The mesodermal cells h ad abundant cisternae of rough endoplasmic reticulum and a prominent Golgi apparatus. Elongated secretory vacuoles were associated with the Golgi apparatus and often contained parallel aggregates of fine filaments (Fig. 2). In some secretory vacuoles, periodic densities also were observed. Some striated collagen fibrils were observed in an apparent intracellular location in long, membrane-limited compartments (Fig. 3). Still other striated fibrils were observed in dense bodies, presumably lysosomes (Fig. 4).


2013 ◽  
Vol 16 (3) ◽  
pp. 593-599 ◽  
Author(s):  
J. Opiela ◽  
M. Samiec

Abstract The efficiency of somatic cell cloning (somatic cell nuclear transfer; SCNT) as well as in vitro fertilization/in vitro embryo production (IVF/IVP) in mammals stay at relatively same level for over a decade. Despite plenty of different approaches none satisfactory break-through took place. In this article, we briefly summarize the implementation of mesenchymal stem cells (MSCs) for experimental embryology. The advantages of using MSCs as nuclear donors in somatic cell cloning and in vitro embryo culture are described. The description of results obtained with these cells in mammalian embryo genomic engineering is presented.


1996 ◽  
Vol 34 (11) ◽  
pp. 87-92
Author(s):  
José Martinez ◽  
Xiaodi Hao

The SOLEPUR process for the treatment of pig slurry, based on the treatment effect of the soil, was developed in France to explore the notion that a simple biobarrier approach may be a potential efficient solution to the large accumulation of liquid animal wastes residues. The unit consists of (i) a managed field (3280 m2) which allows the total recovery of all the leachate water which percolates through growing ryegrass (Lolium perenne), to which the pig slurry is applied, (ii) a system of storage-pump-reactor for denitrification and (iii) a non-managed field for completing treatment. The process involves three operations: (1) overdosing the managed field with surplus slurry (about 1000 m3 pig slurry/ha.year applied from 1991 to 1994), (2) collecting and treating the nitrate-rich leachate and (3) irrigating the final treated water over other fields. This process decreased COD of pig slurry by 99.9 % and removed 99.9 % of phosphorus and approximately 80 % of nitrogen. The remaining nitrogen was oxidized in the soil into nitrate and leached out in the drainage water. The process of denitrification was selected to remove nitrate from the leachate and raw pig slurry was used as an external carbon source.


Sign in / Sign up

Export Citation Format

Share Document